Re: [PATCH net-next v11 05/13] net:ethernet:realtek:rtase: Implement hardware configuration function

From: Heiner Kallweit
Date: Wed Nov 15 2023 - 10:02:59 EST


On 15.11.2023 14:34, Justin Lai wrote:
> Implement rtase_hw_config to set default hardware settings, including
> setting interrupt mitigation, tx/rx DMA burst, interframe gap time,
> rx packet filter, near fifo threshold and fill descriptor ring and
> tally counter address, and enable flow control. When filling the
> rx descriptor ring, the first group of queues needs to be processed
> separately because the positions of the first group of queues are not
> regular with other subsequent groups. The other queues are all newly
> added features, but we want to retain the original design. So they were
> not put together.
>
> Signed-off-by: Justin Lai <justinlai0215@xxxxxxxxxxx>
> ---
> .../net/ethernet/realtek/rtase/rtase_main.c | 243 ++
> drivers/net/ethernet/realtek/rtase/tt.c | 2542 +++++++++++++++++
> drivers/net/ethernet/realtek/rtase/tt.h | 353 +++
> 3 files changed, 3138 insertions(+)
> create mode 100644 drivers/net/ethernet/realtek/rtase/tt.c
> create mode 100644 drivers/net/ethernet/realtek/rtase/tt.h
>
> diff --git a/drivers/net/ethernet/realtek/rtase/rtase_main.c b/drivers/net/ethernet/realtek/rtase/rtase_main.c
> index 46d128a68844..4e04189050cc 100644
> --- a/drivers/net/ethernet/realtek/rtase/rtase_main.c
> +++ b/drivers/net/ethernet/realtek/rtase/rtase_main.c
> @@ -466,6 +466,25 @@ static int rtase_init_ring(const struct net_device *dev)
> return -ENOMEM;
> }
>
> +static void rtase_interrupt_mitigation(const struct rtase_private *tp)
> +{
> + u32 i;
> +
> + /* tx interrupt mitigation */
> + for (i = 0; i < tp->func_tx_queue_num; i++)
> + rtase_w16(tp, RTASE_INT_MITI_TX + i * 2, tp->tx_int_mit);
> +
> + /* rx interrupt mitigation */
> + for (i = 0; i < tp->func_rx_queue_num; i++)
> + rtase_w16(tp, RTASE_INT_MITI_RX + i * 2, tp->rx_int_mit);
> +}
> +
> +static void rtase_tally_counter_addr_fill(const struct rtase_private *tp)
> +{
> + rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr));
> + rtase_w32(tp, RTASE_DTCCR0, lower_32_bits(tp->tally_paddr));
> +}
> +
> static void rtase_tally_counter_clear(const struct rtase_private *tp)
> {
> u32 cmd = lower_32_bits(tp->tally_paddr);
> @@ -474,6 +493,123 @@ static void rtase_tally_counter_clear(const struct rtase_private *tp)
> rtase_w32(tp, RTASE_DTCCR0, cmd | COUNTER_RESET);
> }
>
> +static void rtase_desc_addr_fill(const struct rtase_private *tp)
> +{
> + const struct rtase_ring *ring;
> + u16 i, cmd, val;
> + int err;
> +
> + for (i = 0; i < tp->func_tx_queue_num; i++) {
> + ring = &tp->tx_ring[i];
> +
> + rtase_w32(tp, RTASE_TX_DESC_ADDR0,
> + lower_32_bits(ring->phy_addr));
> + rtase_w32(tp, RTASE_TX_DESC_ADDR4,
> + upper_32_bits(ring->phy_addr));
> +
> + cmd = i | TX_DESC_CMD_WE | TX_DESC_CMD_CS;
> + rtase_w16(tp, RTASE_TX_DESC_COMMAND, cmd);
> +
> + err = read_poll_timeout(rtase_r16, val, !(val & TX_DESC_CMD_CS),
> + 10, 1000, false, tp, RTASE_TX_DESC_COMMAND);
> +
> + if (err == -ETIMEDOUT)
> + netdev_err(tp->dev, "error occurred in fill tx descriptor\n");
> + }
> +
> + for (i = 0; i < tp->func_rx_queue_num; i++) {
> + ring = &tp->rx_ring[i];
> +
> + if (i == 0) {
> + rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR0,
> + lower_32_bits(ring->phy_addr));
> + rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR4,
> + upper_32_bits(ring->phy_addr));
> + } else {
> + rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR0 + ((i - 1) * 8)),
> + lower_32_bits(ring->phy_addr));
> + rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR4 + ((i - 1) * 8)),
> + upper_32_bits(ring->phy_addr));
> + }
> + }
> +}
> +
> +static void rtase_hw_set_features(const struct net_device *dev,
> + netdev_features_t features)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + u16 rx_config, val;
> +
> + rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0);
> + if (features & NETIF_F_RXALL)
> + rx_config |= (ACCEPT_ERR | ACCEPT_RUNT);
> + else
> + rx_config &= ~(ACCEPT_ERR | ACCEPT_RUNT);
> +
> + rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config);
> +
> + val = rtase_r16(tp, RTASE_CPLUS_CMD);
> + if (features & NETIF_F_RXCSUM)
> + rtase_w16(tp, RTASE_CPLUS_CMD, val | RX_CHKSUM);
> + else
> + rtase_w16(tp, RTASE_CPLUS_CMD, val & ~RX_CHKSUM);
> +
> + rx_config = rtase_r16(tp, RTASE_RX_CONFIG_1);
> + if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
> + rx_config |= (INNER_VLAN_DETAG_EN | OUTER_VLAN_DETAG_EN);
> + else
> + rx_config &= ~(INNER_VLAN_DETAG_EN | OUTER_VLAN_DETAG_EN);
> +
> + rtase_w16(tp, RTASE_RX_CONFIG_1, rx_config);
> +}
> +
> +static void rtase_set_mar(const struct rtase_private *tp)
> +{
> + rtase_w32(tp, RTASE_MAR0, tp->mc_filter[0]);
> + rtase_w32(tp, RTASE_MAR1, tp->mc_filter[1]);
> +}
> +
> +static void rtase_hw_set_rx_packet_filter(struct net_device *dev)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + u32 mc_filter[2] = { 0xFFFFFFFF, 0xFFFFFFFF };
> + u16 rx_mode;
> +
> + rx_mode = rtase_r16(tp, RTASE_RX_CONFIG_0) & ~ACCEPT_MASK;
> + rx_mode |= ACCEPT_BROADCAST | ACCEPT_MYPHYS;
> +
> + if (dev->flags & IFF_PROMISC) {
> + rx_mode |= ACCEPT_MULTICAST | ACCEPT_ALLPHYS;
> + } else if ((netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) ||
> + (dev->flags & IFF_ALLMULTI)) {
> + /* too many to filter perfectly -- accept all multicasts */

This comment seems to exist since RTL8139. The filtering seems to be
hash-based, so there's no perfect filtering anyway.
What's the benefit of the filter limit?

> + rx_mode |= ACCEPT_MULTICAST;
> + } else {
> + struct netdev_hw_addr *hw_addr;
> +
> + mc_filter[0] = 0;
> + mc_filter[1] = 0;
> +
> + netdev_for_each_mc_addr(hw_addr, dev) {
> + u32 bit_nr = eth_hw_addr_crc(hw_addr);
> + u32 idx = u32_get_bits(bit_nr, BIT(31));
> + u32 bit = u32_get_bits(bit_nr, MULTICAST_FILTER_MASK);
> +
> + mc_filter[idx] |= BIT(bit);
> + rx_mode |= ACCEPT_MULTICAST;
> + }
> + }
> +
> + if (dev->features & NETIF_F_RXALL)
> + rx_mode |= ACCEPT_ERR | ACCEPT_RUNT;
> +
> + tp->mc_filter[0] = swab32(mc_filter[1]);
> + tp->mc_filter[1] = swab32(mc_filter[0]);
> +
> + rtase_set_mar(tp);

Why this function at all? You can set the registers directly here.
Related question: Why store mc_filter[] in tp?
It's used nowhere else AFAICS.

> + rtase_w16(tp, RTASE_RX_CONFIG_0, rx_mode);
> +}
> +
> static void rtase_irq_dis_and_clear(const struct rtase_private *tp)
> {
> const struct rtase_int_vector *ivec = &tp->int_vector[0];
> @@ -545,6 +681,113 @@ static void rtase_hw_reset(const struct net_device *dev)
> rtase_nic_reset(dev);
> }
>
> +static void rtase_set_rx_queue(const struct rtase_private *tp)
> +{
> + u16 reg_data;
> +
> + reg_data = rtase_r16(tp, RTASE_FCR);
> + switch (tp->func_rx_queue_num) {
> + case 1:
> + u16p_replace_bits(&reg_data, 0x1, FCR_RXQ_MASK);
> + break;
> + case 2:
> + u16p_replace_bits(&reg_data, 0x2, FCR_RXQ_MASK);
> + break;
> + case 4:
> + u16p_replace_bits(&reg_data, 0x3, FCR_RXQ_MASK);
> + break;
> + }
> + rtase_w16(tp, RTASE_FCR, reg_data);
> +}
> +
> +static void rtase_set_tx_queue(const struct rtase_private *tp)
> +{
> + u16 reg_data;
> +
> + reg_data = rtase_r16(tp, RTASE_TX_CONFIG_1);
> + switch (tp->tx_queue_ctrl) {
> + case 1:
> + u16p_replace_bits(&reg_data, 0x0, TC_MODE_MASK);
> + break;
> + case 2:
> + u16p_replace_bits(&reg_data, 0x1, TC_MODE_MASK);
> + break;
> + case 3:
> + case 4:
> + u16p_replace_bits(&reg_data, 0x2, TC_MODE_MASK);
> + break;
> + default:
> + u16p_replace_bits(&reg_data, 0x3, TC_MODE_MASK);
> + break;
> + }
> + rtase_w16(tp, RTASE_TX_CONFIG_1, reg_data);
> +}
> +
> +static void rtase_hw_config(struct net_device *dev)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + u32 reg_data32;
> + u16 reg_data16;
> +
> + rtase_hw_reset(dev);
> +
> + /* Set Rx DMA burst */
> + reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_0);
> + reg_data16 &= ~(RX_SINGLE_TAG | RX_SINGLE_FETCH);
> + u16p_replace_bits(&reg_data16, RX_DMA_BURST_256, RX_MX_DMA_MASK);
> + rtase_w16(tp, RTASE_RX_CONFIG_0, reg_data16);
> +
> + /* New Rx Descritpor */
> + reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_1);
> + reg_data16 |= RX_NEW_DESC_FORMAT_EN | PCIE_NEW_FLOW;
> + u16p_replace_bits(&reg_data16, 0xF, RX_MAX_FETCH_DESC_MASK);
> + rtase_w16(tp, RTASE_RX_CONFIG_1, reg_data16);
> +
> + rtase_set_rx_queue(tp);
> +
> + /* interrupt mitigation */
> + rtase_interrupt_mitigation(tp);
> +
> + /* set tx DMA burst size and interframe gap time */
> + reg_data32 = rtase_r32(tp, RTASE_TX_CONFIG_0);
> + u32p_replace_bits(&reg_data32, TX_DMA_BURST_UNLIMITED, TX_DMA_MASK);
> + u32p_replace_bits(&reg_data32, INTERFRAMEGAP, TX_INTER_FRAME_GAP_MASK);
> + rtase_w32(tp, RTASE_TX_CONFIG_0, reg_data32);
> +
> + /* new tx Descriptor */
> + reg_data16 = rtase_r16(tp, RTASE_TFUN_CTRL);
> + rtase_w16(tp, RTASE_TFUN_CTRL, reg_data16 | TX_NEW_DESC_FORMAT_EN);
> +
> + /* tx Fetch Desc Number */
> + rtase_w8(tp, RTASE_TDFNR, 0x10);
> +
> + /* tag num select */
> + reg_data16 = rtase_r16(tp, RTASE_MTPS);
> + u16p_replace_bits(&reg_data16, 0x4, TAG_NUM_SEL_MASK);
> + rtase_w16(tp, RTASE_MTPS, reg_data16);
> +
> + rtase_set_tx_queue(tp);
> +
> + /* TOK condition */
> + rtase_w16(tp, RTASE_TOKSEL, 0x5555);
> +
> + rtase_tally_counter_addr_fill(tp);
> + rtase_desc_addr_fill(tp);
> + rtase_hw_set_features(dev, dev->features);
> +
> + /* enable flow control */
> + reg_data16 = rtase_r16(tp, RTASE_CPLUS_CMD);
> + reg_data16 |= (FORCE_TXFLOW_EN | FORCE_RXFLOW_EN);
> + rtase_w16(tp, RTASE_CPLUS_CMD, reg_data16);
> + /* set Near FIFO Threshold - rx missed issue. */
> + rtase_w16(tp, RTASE_RFIFONFULL, 0x190);
> +
> + rtase_w16(tp, RTASE_RMS, tp->rx_buf_sz);
> +
> + /* set Rx packet filter */
> + rtase_hw_set_rx_packet_filter(dev);
> +}
> +
> static void rtase_nic_enable(const struct net_device *dev)
> {
> const struct rtase_private *tp = netdev_priv(dev);
> diff --git a/drivers/net/ethernet/realtek/rtase/tt.c b/drivers/net/ethernet/realtek/rtase/tt.c
> new file mode 100644
> index 000000000000..5ea4d51fcc47
> --- /dev/null
> +++ b/drivers/net/ethernet/realtek/rtase/tt.c
> @@ -0,0 +1,2542 @@
> +// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
> +/*
> + * rtase is the Linux device driver released for Realtek Automotive Switch
> + * controllers with PCI-Express interface.
> + *
> + * Copyright(c) 2023 Realtek Semiconductor Corp.
> + *
> + * Below is a simplified block diagram of the chip and its relevant interfaces.
> + *
> + * *************************
> + * * *
> + * * CPU network device *
> + * * *
> + * * +-------------+ *
> + * * | PCIE Host | *
> + * ***********++************
> + * ||
> + * PCIE
> + * ||
> + * ********************++**********************
> + * * | PCIE Endpoint | *
> + * * +---------------+ *
> + * * | GMAC | *
> + * * +--++--+ Realtek *
> + * * || RTL90xx Series *
> + * * || *
> + * * +-------------++----------------+ *
> + * * | | MAC | | *
> + * * | +-----+ | *
> + * * | | *
> + * * | Ethernet Switch Core | *
> + * * | | *
> + * * | +-----+ +-----+ | *
> + * * | | MAC |...........| MAC | | *
> + * * +---+-----+-----------+-----+---+ *
> + * * | PHY |...........| PHY | *
> + * * +--++-+ +--++-+ *
> + * *************||****************||***********
> + *
> + * The block of the Realtek RTL90xx series is our entire chip architecture,
> + * the GMAC is connected to the switch core, and there is no PHY in between.
> + * In addition, this driver is mainly used to control GMAC, but does not
> + * control the switch core, so it is not the same as DSA.
> + */
> +
> +#include <linux/crc32.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/etherdevice.h>
> +#include <linux/if_vlan.h>
> +#include <linux/in.h>
> +#include <linux/init.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/iopoll.h>
> +#include <linux/ip.h>
> +#include <linux/ipv6.h>
> +#include <linux/mdio.h>
> +#include <linux/module.h>
> +#include <linux/moduleparam.h>
> +#include <linux/netdevice.h>
> +#include <linux/pci.h>
> +#include <linux/prefetch.h>
> +#include <linux/rtnetlink.h>
> +#include <linux/tcp.h>
> +#include <asm/irq.h>
> +#include <net/ip6_checksum.h>
> +#include <net/page_pool/helpers.h>
> +#include <net/pkt_cls.h>
> +
> +#include "rtase.h"
> +
> +#define RTK_OPTS1_DEBUG_VALUE 0x0BADBEEF
> +#define RTK_MAGIC_NUMBER 0x0BADBADBADBADBAD
> +
> +static const struct pci_device_id rtase_pci_tbl[] = {
> + {PCI_VDEVICE(REALTEK, 0x906A)},
> + {}
> +};
> +
> +MODULE_DEVICE_TABLE(pci, rtase_pci_tbl);
> +
> +MODULE_AUTHOR("Realtek ARD Software Team");
> +MODULE_DESCRIPTION("Network Driver for the PCIe interface of Realtek Automotive Ethernet Switch");
> +MODULE_LICENSE("Dual BSD/GPL");
> +
> +struct rtase_counters {
> + __le64 tx_packets;
> + __le64 rx_packets;
> + __le64 tx_errors;
> + __le32 rx_errors;
> + __le16 rx_missed;
> + __le16 align_errors;
> + __le32 tx_one_collision;
> + __le32 tx_multi_collision;
> + __le64 rx_unicast;
> + __le64 rx_broadcast;
> + __le32 rx_multicast;
> + __le16 tx_aborted;
> + __le16 tx_underun;
> +} __packed;
> +

You defined this struct in patch 1 already in another source code file.
Why redefine it?

> +static void rtase_w8(const struct rtase_private *tp, u16 reg, u8 val8)
> +{
> + writeb(val8, tp->mmio_addr + reg);
> +}
> +
> +static void rtase_w16(const struct rtase_private *tp, u16 reg, u16 val16)
> +{
> + writew(val16, tp->mmio_addr + reg);
> +}
> +
> +static void rtase_w32(const struct rtase_private *tp, u16 reg, u32 val32)
> +{
> + writel(val32, tp->mmio_addr + reg);
> +}
> +
> +static u8 rtase_r8(const struct rtase_private *tp, u16 reg)
> +{
> + return readb(tp->mmio_addr + reg);
> +}
> +
> +static u16 rtase_r16(const struct rtase_private *tp, u16 reg)
> +{
> + return readw(tp->mmio_addr + reg);
> +}
> +
> +static u32 rtase_r32(const struct rtase_private *tp, u16 reg)
> +{
> + return readl(tp->mmio_addr + reg);
> +}
> +
> +static void rtase_set_rxbufsize(struct rtase_private *tp)
> +{
> + tp->rx_buf_sz = RX_BUF_SIZE;
> +}
> +
> +static int rtase_alloc_desc(struct rtase_private *tp)
> +{
> + struct pci_dev *pdev = tp->pdev;
> + u32 i;
> +
> + /* rx and tx descriptors needs 256 bytes alignment.
> + * dma_alloc_coherent provides more.
> + */
> + for (i = 0; i < tp->func_tx_queue_num; i++) {
> + tp->tx_ring[i].desc = dma_alloc_coherent(&pdev->dev,
> + RTASE_TX_RING_DESC_SIZE,
> + &tp->tx_ring[i].phy_addr,
> + GFP_KERNEL);
> + if (!tp->tx_ring[i].desc)
> + return -ENOMEM;
> + }
> +
> + for (i = 0; i < tp->func_rx_queue_num; i++) {
> + tp->rx_ring[i].desc =
> + dma_alloc_coherent(&pdev->dev, RTASE_RX_RING_DESC_SIZE,
> + &tp->rx_ring[i].phy_addr,
> + GFP_KERNEL);
> + if (!tp->rx_ring[i].desc)
> + return -ENOMEM;
> + }
> +
> + return 0;
> +}
> +
> +static void rtase_free_desc(struct rtase_private *tp)
> +{
> + struct pci_dev *pdev = tp->pdev;
> + u32 i;
> +
> + for (i = 0; i < tp->func_tx_queue_num; i++) {
> + if (!tp->tx_ring[i].desc)
> + continue;
> +
> + dma_free_coherent(&pdev->dev, RTASE_TX_RING_DESC_SIZE,
> + tp->tx_ring[i].desc,
> + tp->tx_ring[i].phy_addr);
> + tp->tx_ring[i].desc = NULL;
> + }
> +
> + for (i = 0; i < tp->func_rx_queue_num; i++) {
> + if (!tp->rx_ring[i].desc)
> + continue;
> +
> + dma_free_coherent(&pdev->dev, RTASE_RX_RING_DESC_SIZE,
> + tp->rx_ring[i].desc,
> + tp->rx_ring[i].phy_addr);
> + tp->rx_ring[i].desc = NULL;
> + }
> +}
> +
> +static void rtase_unmap_tx_skb(struct pci_dev *pdev, u32 len,
> + struct tx_desc *desc)
> +{
> + dma_unmap_single(&pdev->dev, le64_to_cpu(desc->addr), len,
> + DMA_TO_DEVICE);
> + desc->opts1 = cpu_to_le32(RTK_OPTS1_DEBUG_VALUE);
> + desc->opts2 = 0x00;
> + desc->addr = cpu_to_le64(RTK_MAGIC_NUMBER);
> +}
> +
> +static void rtase_tx_clear_range(struct rtase_ring *ring, u32 start, u32 n)
> +{
> + const struct rtase_private *tp = ring->ivec->tp;
> + struct net_device *dev = tp->dev;
> + struct tx_desc *desc_base = ring->desc;
> + u32 i;
> +
> + for (i = 0; i < n; i++) {
> + u32 entry = (start + i) % NUM_DESC;
> + struct tx_desc *desc = desc_base + entry;
> + u32 len = ring->mis.len[entry];
> + struct sk_buff *skb;
> +
> + if (len == 0)
> + continue;
> +
> + rtase_unmap_tx_skb(tp->pdev, len, desc);
> + ring->mis.len[entry] = 0;
> + skb = ring->skbuff[entry];
> + if (!skb)
> + continue;
> +
> + dev->stats.tx_dropped++;
> + dev_kfree_skb_any(skb);
> + ring->skbuff[entry] = NULL;
> + }
> +}
> +
> +static void rtase_tx_clear(struct rtase_private *tp)
> +{
> + struct rtase_ring *ring;
> + u16 i;
> +
> + for (i = 0; i < tp->func_tx_queue_num; i++) {
> + ring = &tp->tx_ring[i];
> + rtase_tx_clear_range(ring, ring->dirty_idx, NUM_DESC);
> + ring->cur_idx = 0;
> + ring->dirty_idx = 0;
> + }
> +}
> +
> +static void rtase_mark_to_asic(union rx_desc *desc, u32 rx_buf_sz)
> +{
> + u32 eor = le32_to_cpu(desc->desc_cmd.opts1) & RING_END;
> +
> + desc->desc_status.opts2 = 0;
> + /* force memory writes to complete before releasing descriptor */
> + dma_wmb();
> + WRITE_ONCE(desc->desc_cmd.opts1,
> + cpu_to_le32(DESC_OWN | eor | rx_buf_sz));
> +}
> +
> +static bool rtase_tx_avail(struct rtase_ring *ring)
> +{
> + u32 avail_num = READ_ONCE(ring->dirty_idx) + NUM_DESC -
> + READ_ONCE(ring->cur_idx);
> +
> + return avail_num > MAX_SKB_FRAGS;
> +}
> +
> +static int tx_handler(struct rtase_ring *ring, int budget)
> +{
> + const struct rtase_private *tp = ring->ivec->tp;
> + struct net_device *dev = tp->dev;
> + int workdone = 0;
> + u32 dirty_tx;
> + u32 tx_left;
> +
> + dirty_tx = ring->dirty_idx;
> + tx_left = READ_ONCE(ring->cur_idx) - dirty_tx;
> +
> + while (tx_left > 0) {
> + u32 entry = dirty_tx % NUM_DESC;
> + struct tx_desc *desc = ring->desc +
> + sizeof(struct tx_desc) * entry;
> + u32 len = ring->mis.len[entry];
> + u32 status;
> +
> + status = le32_to_cpu(desc->opts1);
> +
> + if (status & DESC_OWN)
> + break;
> +
> + rtase_unmap_tx_skb(tp->pdev, len, desc);
> + ring->mis.len[entry] = 0;
> + if (ring->skbuff[entry]) {
> + dev_consume_skb_any(ring->skbuff[entry]);
> + ring->skbuff[entry] = NULL;
> + }
> +
> + dev->stats.tx_bytes += len;
> + dev->stats.tx_packets++;
> + dirty_tx++;
> + tx_left--;
> + workdone++;
> +
> + if (workdone == budget)
> + break;
> + }
> +
> + if (ring->dirty_idx != dirty_tx) {
> + WRITE_ONCE(ring->dirty_idx, dirty_tx);
> +
> + if (__netif_subqueue_stopped(dev, ring->index) &&
> + rtase_tx_avail(ring))
> + netif_start_subqueue(dev, ring->index);
> +

Really no memory barriers needed in this function?

> + if (ring->cur_idx != dirty_tx)
> + rtase_w8(tp, RTASE_TPPOLL, BIT(ring->index));
> + }
> +
> + return workdone;
> +}
> +
> +static void rtase_tx_desc_init(struct rtase_private *tp, u16 idx)
> +{
> + struct rtase_ring *ring = &tp->tx_ring[idx];
> + struct tx_desc *desc;
> + u32 i;
> +
> + memset(ring->desc, 0x0, RTASE_TX_RING_DESC_SIZE);
> + memset(ring->skbuff, 0x0, sizeof(ring->skbuff));
> + ring->cur_idx = 0;
> + ring->dirty_idx = 0;
> + ring->index = idx;
> +
> + for (i = 0; i < NUM_DESC; i++) {
> + ring->mis.len[i] = 0;
> + if ((NUM_DESC - 1) == i) {
> + desc = ring->desc + sizeof(struct tx_desc) * i;
> + desc->opts1 = cpu_to_le32(RING_END);
> + }
> + }
> +
> + ring->ring_handler = tx_handler;
> + if (idx < 4) {
> + ring->ivec = &tp->int_vector[idx];
> + list_add_tail(&ring->ring_entry,
> + &tp->int_vector[idx].ring_list);
> + } else {
> + ring->ivec = &tp->int_vector[0];
> + list_add_tail(&ring->ring_entry, &tp->int_vector[0].ring_list);
> + }
> +}
> +
> +static void rtase_map_to_asic(union rx_desc *desc, dma_addr_t mapping,
> + u32 rx_buf_sz)
> +{
> + desc->desc_cmd.addr = cpu_to_le64(mapping);
> + /* make sure the physical address has been updated */
> + wmb();
> + rtase_mark_to_asic(desc, rx_buf_sz);
> +}
> +
> +static void rtase_make_unusable_by_asic(union rx_desc *desc)
> +{
> + desc->desc_cmd.addr = cpu_to_le64(RTK_MAGIC_NUMBER);
> + desc->desc_cmd.opts1 &= ~cpu_to_le32(DESC_OWN | RSVD_MASK);
> +}
> +
> +static int rtase_alloc_rx_skb(const struct rtase_ring *ring,
> + struct sk_buff **p_sk_buff, union rx_desc *desc,
> + dma_addr_t *rx_phy_addr, u8 in_intr)
> +{
> + struct rtase_int_vector *ivec = ring->ivec;
> + const struct rtase_private *tp = ivec->tp;
> + struct sk_buff *skb = NULL;
> + struct page *page;
> + dma_addr_t mapping;
> + void *buf_addr;
> + int ret = 0;
> +
> + page = page_pool_dev_alloc_pages(tp->page_pool);
> + if (!page) {
> + netdev_err(tp->dev, "failed to alloc page\n");
> + goto err_out;
> + }
> +
> + buf_addr = page_address(page);
> + mapping = page_pool_get_dma_addr(page);
> +
> + skb = build_skb(buf_addr, PAGE_SIZE);
> + if (!skb) {
> + page_pool_put_full_page(tp->page_pool, page, true);
> + netdev_err(tp->dev, "failed to build skb\n");
> + goto err_out;
> + }
> +
> + *p_sk_buff = skb;
> + *rx_phy_addr = mapping;
> + rtase_map_to_asic(desc, mapping, tp->rx_buf_sz);
> +
> + return ret;
> +
> +err_out:
> + if (skb)
> + dev_kfree_skb(skb);
> +
> + ret = -ENOMEM;
> + rtase_make_unusable_by_asic(desc);
> +
> + return ret;
> +}
> +
> +static u32 rtase_rx_ring_fill(struct rtase_ring *ring, u32 ring_start,
> + u32 ring_end, u8 in_intr)
> +{
> + union rx_desc *desc_base = ring->desc;
> + u32 cur;
> +
> + for (cur = ring_start; ring_end - cur > 0; cur++) {
> + u32 i = cur % NUM_DESC;
> + union rx_desc *desc = desc_base + i;
> + int ret;
> +
> + if (ring->skbuff[i])
> + continue;
> +
> + ret = rtase_alloc_rx_skb(ring, &ring->skbuff[i], desc,
> + &ring->mis.data_phy_addr[i],
> + in_intr);
> + if (ret)
> + break;
> + }
> +
> + return cur - ring_start;
> +}
> +
> +static void rtase_mark_as_last_descriptor(union rx_desc *desc)
> +{
> + desc->desc_cmd.opts1 |= cpu_to_le32(RING_END);
> +}
> +
> +static void rtase_rx_ring_clear(struct rtase_ring *ring)
> +{
> + union rx_desc *desc;
> + u32 i;
> +
> + for (i = 0; i < NUM_DESC; i++) {
> + desc = ring->desc + sizeof(union rx_desc) * i;
> +
> + if (!ring->skbuff[i])
> + continue;
> +
> + dev_kfree_skb(ring->skbuff[i]);
> +
> + ring->skbuff[i] = NULL;
> +
> + rtase_make_unusable_by_asic(desc);
> + }
> +}
> +
> +static int rtase_fragmented_frame(u32 status)
> +{
> + return (status & (RX_FIRST_FRAG | RX_LAST_FRAG)) !=
> + (RX_FIRST_FRAG | RX_LAST_FRAG);
> +}
> +
> +static void rtase_rx_csum(const struct rtase_private *tp, struct sk_buff *skb,
> + const union rx_desc *desc)
> +{
> + u32 opts2 = le32_to_cpu(desc->desc_status.opts2);
> +
> + /* rx csum offload */
> + if (((opts2 & RX_V4F) && !(opts2 & RX_IPF)) || (opts2 & RX_V6F)) {
> + if (((opts2 & RX_TCPT) && !(opts2 & RX_TCPF)) ||
> + ((opts2 & RX_UDPT) && !(opts2 & RX_UDPF))) {
> + skb->ip_summed = CHECKSUM_UNNECESSARY;
> + } else {
> + skb->ip_summed = CHECKSUM_NONE;
> + }
> + } else {
> + skb->ip_summed = CHECKSUM_NONE;
> + }
> +}
> +
> +static void rtase_rx_vlan_skb(union rx_desc *desc, struct sk_buff *skb)
> +{
> + u32 opts2 = le32_to_cpu(desc->desc_status.opts2);
> +
> + if (!(opts2 & RX_VLAN_TAG))
> + return;
> +
> + __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & VLAN_TAG_MASK));
> +}
> +
> +static void rtase_rx_skb(const struct rtase_ring *ring, struct sk_buff *skb)
> +{
> + struct rtase_int_vector *ivec = ring->ivec;
> +
> + napi_gro_receive(&ivec->napi, skb);
> +}
> +
> +static int rx_handler(struct rtase_ring *ring, int budget)
> +{
> + const struct rtase_private *tp = ring->ivec->tp;
> + u32 pkt_size, cur_rx, delta, entry, status;
> + struct net_device *dev = tp->dev;
> + union rx_desc *desc_base = ring->desc;
> + struct sk_buff *skb;
> + union rx_desc *desc;
> + int workdone = 0;
> +
> + if (!ring->desc)
> + return workdone;
> +
> + cur_rx = ring->cur_idx;
> + entry = cur_rx % NUM_DESC;
> + desc = &desc_base[entry];
> +
> + do {
> + /* make sure discriptor has been updated */
> + rmb();
> + status = le32_to_cpu(desc->desc_status.opts1);
> +
> + if (status & DESC_OWN)
> + break;
> +
> + if (unlikely(status & RX_RES)) {
> + if (net_ratelimit())
> + netdev_warn(dev, "Rx ERROR. status = %08x\n",
> + status);
> +
> + dev->stats.rx_errors++;
> +
> + if (status & (RX_RWT | RX_RUNT))
> + dev->stats.rx_length_errors++;
> +
> + if (status & RX_CRC)
> + dev->stats.rx_crc_errors++;
> +
> + if (dev->features & NETIF_F_RXALL)
> + goto process_pkt;
> +
> + rtase_mark_to_asic(desc, tp->rx_buf_sz);
> + goto skip_process_pkt;
> + }
> +
> +process_pkt:
> + pkt_size = status & RX_PKT_SIZE_MASK;
> + if (likely(!(dev->features & NETIF_F_RXFCS)))
> + pkt_size -= ETH_FCS_LEN;
> +
> + /* the driver does not support incoming fragmented
> + * frames. they are seen as a symptom of over-mtu
> + * sized frames
> + */
> + if (unlikely(rtase_fragmented_frame(status))) {
> + dev->stats.rx_dropped++;
> + dev->stats.rx_length_errors++;
> + rtase_mark_to_asic(desc, tp->rx_buf_sz);
> + continue;
> + }
> +
> + skb = ring->skbuff[entry];
> + dma_sync_single_for_cpu(&tp->pdev->dev,
> + ring->mis.data_phy_addr[entry],
> + tp->rx_buf_sz, DMA_FROM_DEVICE);
> +
> + ring->skbuff[entry] = NULL;
> +
> + if (dev->features & NETIF_F_RXCSUM)
> + rtase_rx_csum(tp, skb, desc);
> +
> + skb->dev = dev;
> + skb_put(skb, pkt_size);
> + skb_mark_for_recycle(skb);
> + skb->protocol = eth_type_trans(skb, dev);
> +
> + if (skb->pkt_type == PACKET_MULTICAST)
> + dev->stats.multicast++;
> +
> + rtase_rx_vlan_skb(desc, skb);
> + rtase_rx_skb(ring, skb);
> +
> + dev->stats.rx_bytes += pkt_size;
> + dev->stats.rx_packets++;
> +
> +skip_process_pkt:
> + workdone++;
> + cur_rx++;
> + entry = cur_rx % NUM_DESC;
> + desc = ring->desc + sizeof(union rx_desc) * entry;
> + prefetch(desc);
> + } while (workdone != budget);
> +
> + ring->cur_idx = cur_rx;
> + delta = rtase_rx_ring_fill(ring, ring->dirty_idx, ring->cur_idx, 1);
> +
> + if (!delta && workdone)
> + netdev_info(dev, "no Rx buffer allocated\n");
> +
> + ring->dirty_idx += delta;
> +
> + if ((ring->dirty_idx + NUM_DESC) == ring->cur_idx)
> + netdev_emerg(dev, "Rx buffers exhausted\n");
> +
> + return workdone;
> +}
> +
> +static void rtase_rx_desc_init(struct rtase_private *tp, u16 idx)
> +{
> + struct rtase_ring *ring = &tp->rx_ring[idx];
> + u16 i;
> +
> + memset(ring->desc, 0x0, RTASE_RX_RING_DESC_SIZE);
> + memset(ring->skbuff, 0x0, sizeof(ring->skbuff));
> + ring->cur_idx = 0;
> + ring->dirty_idx = 0;
> + ring->index = idx;
> +
> + for (i = 0; i < NUM_DESC; i++)
> + ring->mis.data_phy_addr[i] = 0;
> +
> + ring->ring_handler = rx_handler;
> + ring->ivec = &tp->int_vector[idx];
> + list_add_tail(&ring->ring_entry, &tp->int_vector[idx].ring_list);
> +}
> +
> +static void rtase_rx_clear(struct rtase_private *tp)
> +{
> + u32 i;
> +
> + for (i = 0; i < tp->func_rx_queue_num; i++)
> + rtase_rx_ring_clear(&tp->rx_ring[i]);
> +
> + page_pool_destroy(tp->page_pool);
> + tp->page_pool = NULL;
> +}
> +
> +static int rtase_init_ring(const struct net_device *dev)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + struct page_pool *page_pool;
> + struct page_pool_params pp_params = {
> + .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
> + .order = 0,
> + .pool_size = NUM_DESC * tp->func_rx_queue_num,
> + .nid = dev_to_node(&tp->pdev->dev),
> + .dev = &tp->pdev->dev,
> + .dma_dir = DMA_FROM_DEVICE,
> + .max_len = PAGE_SIZE,
> + .offset = 0,
> + };
> + u32 num;
> + u16 i;
> +
> + page_pool = page_pool_create(&pp_params);
> + if (IS_ERR(page_pool)) {
> + netdev_err(tp->dev, "failed to create page pool\n");
> + return -ENOMEM;
> + }
> +
> + tp->page_pool = page_pool;
> +
> + for (i = 0; i < tp->func_tx_queue_num; i++)
> + rtase_tx_desc_init(tp, i);
> +
> + for (i = 0; i < tp->func_rx_queue_num; i++) {
> + rtase_rx_desc_init(tp, i);
> + num = rtase_rx_ring_fill(&tp->rx_ring[i], 0, NUM_DESC, 0);
> + if (num != NUM_DESC)
> + goto err_out;
> +
> + rtase_mark_as_last_descriptor(tp->rx_ring[i].desc +
> + sizeof(union rx_desc) *
> + (NUM_DESC - 1));
> + }
> +
> + return 0;
> +
> +err_out:
> + rtase_rx_clear(tp);
> + return -ENOMEM;
> +}
> +
> +static void rtase_interrupt_mitigation(const struct rtase_private *tp)
> +{
> + u32 i;
> +
> + /* tx interrupt mitigation */
> + for (i = 0; i < tp->func_tx_queue_num; i++)
> + rtase_w16(tp, RTASE_INT_MITI_TX + i * 2, tp->tx_int_mit);
> +
> + /* rx interrupt mitigation */
> + for (i = 0; i < tp->func_rx_queue_num; i++)
> + rtase_w16(tp, RTASE_INT_MITI_RX + i * 2, tp->rx_int_mit);
> +}
> +
> +static void rtase_tally_counter_addr_fill(const struct rtase_private *tp)
> +{
> + rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr));
> + rtase_w32(tp, RTASE_DTCCR0, lower_32_bits(tp->tally_paddr));
> +}
> +
> +static void rtase_tally_counter_clear(const struct rtase_private *tp)
> +{
> + u32 cmd = lower_32_bits(tp->tally_paddr);
> +
> + rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr));
> + rtase_w32(tp, RTASE_DTCCR0, cmd | COUNTER_RESET);
> +}
> +
> +static void rtase_desc_addr_fill(const struct rtase_private *tp)
> +{
> + const struct rtase_ring *ring;
> + u16 i, cmd, val;
> + int err;
> +
> + for (i = 0; i < tp->func_tx_queue_num; i++) {
> + ring = &tp->tx_ring[i];
> +
> + rtase_w32(tp, RTASE_TX_DESC_ADDR0,
> + lower_32_bits(ring->phy_addr));
> + rtase_w32(tp, RTASE_TX_DESC_ADDR4,
> + upper_32_bits(ring->phy_addr));
> +
> + cmd = i | TX_DESC_CMD_WE | TX_DESC_CMD_CS;
> + rtase_w16(tp, RTASE_TX_DESC_COMMAND, cmd);
> +
> + err = read_poll_timeout(rtase_r16, val, !(val & TX_DESC_CMD_CS),
> + 10, 1000, false, tp, RTASE_TX_DESC_COMMAND);
> +
> + if (err == -ETIMEDOUT)
> + netdev_err(tp->dev, "error occurred in fill tx descriptor\n");
> + }
> +
> + for (i = 0; i < tp->func_rx_queue_num; i++) {
> + ring = &tp->rx_ring[i];
> +
> + if (i == 0) {
> + rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR0,
> + lower_32_bits(ring->phy_addr));
> + rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR4,
> + upper_32_bits(ring->phy_addr));
> + } else {
> + rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR0 + ((i - 1) * 8)),
> + lower_32_bits(ring->phy_addr));
> + rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR4 + ((i - 1) * 8)),
> + upper_32_bits(ring->phy_addr));
> + }
> + }
> +}
> +
> +static void rtase_hw_set_features(const struct net_device *dev,
> + netdev_features_t features)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + u16 rx_config, val;
> +
> + rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0);
> + if (features & NETIF_F_RXALL)
> + rx_config |= (ACCEPT_ERR | ACCEPT_RUNT);
> + else
> + rx_config &= ~(ACCEPT_ERR | ACCEPT_RUNT);
> +
> + rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config);
> +
> + val = rtase_r16(tp, RTASE_CPLUS_CMD);
> + if (features & NETIF_F_RXCSUM)
> + rtase_w16(tp, RTASE_CPLUS_CMD, val | RX_CHKSUM);
> + else
> + rtase_w16(tp, RTASE_CPLUS_CMD, val & ~RX_CHKSUM);
> +
> + rx_config = rtase_r16(tp, RTASE_RX_CONFIG_1);
> + if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
> + rx_config |= (INNER_VLAN_DETAG_EN | OUTER_VLAN_DETAG_EN);
> + else
> + rx_config &= ~(INNER_VLAN_DETAG_EN | OUTER_VLAN_DETAG_EN);
> +
> + rtase_w16(tp, RTASE_RX_CONFIG_1, rx_config);
> +}
> +
> +static void rtase_set_mar(const struct rtase_private *tp)
> +{
> + rtase_w32(tp, RTASE_MAR0, tp->mc_filter[0]);
> + rtase_w32(tp, RTASE_MAR1, tp->mc_filter[1]);
> +}
> +
> +static void rtase_hw_set_rx_packet_filter(struct net_device *dev)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + u32 mc_filter[2] = { 0xFFFFFFFF, 0xFFFFFFFF };
> + u16 rx_mode;
> +
> + rx_mode = rtase_r16(tp, RTASE_RX_CONFIG_0) & ~ACCEPT_MASK;
> + rx_mode |= ACCEPT_BROADCAST | ACCEPT_MYPHYS;
> +
> + if (dev->flags & IFF_PROMISC) {
> + rx_mode |= ACCEPT_MULTICAST | ACCEPT_ALLPHYS;
> + } else if ((netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) ||
> + (dev->flags & IFF_ALLMULTI)) {
> + /* too many to filter perfectly -- accept all multicasts */
> + rx_mode |= ACCEPT_MULTICAST;
> + } else {
> + struct netdev_hw_addr *hw_addr;
> +
> + mc_filter[0] = 0;
> + mc_filter[1] = 0;
> +
> + netdev_for_each_mc_addr(hw_addr, dev) {
> + u32 bit_nr = eth_hw_addr_crc(hw_addr);
> + u32 idx = u32_get_bits(bit_nr, BIT(31));
> + u32 bit = u32_get_bits(bit_nr, MULTICAST_FILTER_MASK);
> +
> + mc_filter[idx] |= BIT(bit);
> + rx_mode |= ACCEPT_MULTICAST;
> + }
> + }
> +
> + if (dev->features & NETIF_F_RXALL)
> + rx_mode |= ACCEPT_ERR | ACCEPT_RUNT;
> +
> + tp->mc_filter[0] = swab32(mc_filter[1]);
> + tp->mc_filter[1] = swab32(mc_filter[0]);
> +
> + rtase_set_mar(tp);
> + rtase_w16(tp, RTASE_RX_CONFIG_0, rx_mode);
> +}
> +

This function is define in rt_main already. You seem to duplicate a lot
of code. Why?

> +static void rtase_irq_dis_and_clear(const struct rtase_private *tp)
> +{
> + const struct rtase_int_vector *ivec = &tp->int_vector[0];
> + u32 val1;
> + u16 val2;
> + u8 i;
> +
> + rtase_w32(tp, ivec->imr_addr, 0);
> + val1 = rtase_r32(tp, ivec->isr_addr);
> + rtase_w32(tp, ivec->isr_addr, val1);
> +
> + for (i = 1; i < tp->int_nums; i++) {
> + ivec = &tp->int_vector[i];
> + rtase_w16(tp, ivec->imr_addr, 0);
> + val2 = rtase_r16(tp, ivec->isr_addr);
> + rtase_w16(tp, ivec->isr_addr, val2);
> + }
> +}
> +
> +static void rtase_poll_timeout(const struct rtase_private *tp, u32 cond,
> + u32 sleep_us, u64 timeout_us, u16 reg)
> +{
> + int err;
> + u8 val;
> +
> + err = read_poll_timeout(rtase_r8, val, val & cond, sleep_us, timeout_us,
> + false, tp, reg);
> +
> + if (err == -ETIMEDOUT)
> + netdev_err(tp->dev, "poll reg 0x00%x timeout\n", reg);
> +}
> +
> +static void rtase_nic_reset(const struct net_device *dev)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + u16 rx_config;
> + u8 val;
> +
> + rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0);
> + rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config & ~ACCEPT_MASK);
> +
> + val = rtase_r8(tp, RTASE_MISC);
> + rtase_w8(tp, RTASE_MISC, val | RX_DV_GATE_EN);
> +
> + val = rtase_r8(tp, RTASE_CHIP_CMD);
> + rtase_w8(tp, RTASE_CHIP_CMD, val | STOP_REQ);
> + mdelay(2);
> +
> + rtase_poll_timeout(tp, STOP_REQ_DONE, 100, 150000, RTASE_CHIP_CMD);
> +
> + rtase_poll_timeout(tp, TX_FIFO_EMPTY, 100, 100000, RTASE_FIFOR);
> +
> + rtase_poll_timeout(tp, RX_FIFO_EMPTY, 100, 100000, RTASE_FIFOR);
> +
> + val = rtase_r8(tp, RTASE_CHIP_CMD);
> + rtase_w8(tp, RTASE_CHIP_CMD, val & ~(TE | RE));
> + val = rtase_r8(tp, RTASE_CHIP_CMD);
> + rtase_w8(tp, RTASE_CHIP_CMD, val & ~STOP_REQ);
> +
> + rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config);
> +}
> +
> +static void rtase_hw_reset(const struct net_device *dev)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> +
> + rtase_irq_dis_and_clear(tp);
> +
> + rtase_nic_reset(dev);
> +}
> +
> +static void rtase_set_rx_queue(const struct rtase_private *tp)
> +{
> + u16 reg_data;
> +
> + reg_data = rtase_r16(tp, RTASE_FCR);
> + switch (tp->func_rx_queue_num) {
> + case 1:
> + u16p_replace_bits(&reg_data, 0x1, FCR_RXQ_MASK);
> + break;
> + case 2:
> + u16p_replace_bits(&reg_data, 0x2, FCR_RXQ_MASK);
> + break;
> + case 4:
> + u16p_replace_bits(&reg_data, 0x3, FCR_RXQ_MASK);
> + break;
> + }
> + rtase_w16(tp, RTASE_FCR, reg_data);
> +}
> +
> +static void rtase_set_tx_queue(const struct rtase_private *tp)
> +{
> + u16 reg_data;
> +
> + reg_data = rtase_r16(tp, RTASE_TX_CONFIG_1);
> + switch (tp->tx_queue_ctrl) {
> + case 1:
> + u16p_replace_bits(&reg_data, 0x0, TC_MODE_MASK);
> + break;
> + case 2:
> + u16p_replace_bits(&reg_data, 0x1, TC_MODE_MASK);
> + break;
> + case 3:
> + case 4:
> + u16p_replace_bits(&reg_data, 0x2, TC_MODE_MASK);
> + break;
> + default:
> + u16p_replace_bits(&reg_data, 0x3, TC_MODE_MASK);
> + break;
> + }
> + rtase_w16(tp, RTASE_TX_CONFIG_1, reg_data);
> +}
> +
> +static void rtase_hw_config(struct net_device *dev)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + u32 reg_data32;
> + u16 reg_data16;
> +
> + rtase_hw_reset(dev);
> +
> + /* Set Rx DMA burst */
> + reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_0);
> + reg_data16 &= ~(RX_SINGLE_TAG | RX_SINGLE_FETCH);
> + u16p_replace_bits(&reg_data16, RX_DMA_BURST_256, RX_MX_DMA_MASK);
> + rtase_w16(tp, RTASE_RX_CONFIG_0, reg_data16);
> +
> + /* New Rx Descritpor */
> + reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_1);
> + reg_data16 |= RX_NEW_DESC_FORMAT_EN | PCIE_NEW_FLOW;
> + u16p_replace_bits(&reg_data16, 0xF, RX_MAX_FETCH_DESC_MASK);
> + rtase_w16(tp, RTASE_RX_CONFIG_1, reg_data16);
> +
> + rtase_set_rx_queue(tp);
> +
> + /* interrupt mitigation */
> + rtase_interrupt_mitigation(tp);
> +
> + /* set tx DMA burst size and interframe gap time */
> + reg_data32 = rtase_r32(tp, RTASE_TX_CONFIG_0);
> + u32p_replace_bits(&reg_data32, TX_DMA_BURST_UNLIMITED, TX_DMA_MASK);
> + u32p_replace_bits(&reg_data32, INTERFRAMEGAP, TX_INTER_FRAME_GAP_MASK);
> + rtase_w32(tp, RTASE_TX_CONFIG_0, reg_data32);
> +
> + /* new tx Descriptor */
> + reg_data16 = rtase_r16(tp, RTASE_TFUN_CTRL);
> + rtase_w16(tp, RTASE_TFUN_CTRL, reg_data16 | TX_NEW_DESC_FORMAT_EN);
> +
> + /* tx Fetch Desc Number */
> + rtase_w8(tp, RTASE_TDFNR, 0x10);
> +
> + /* tag num select */
> + reg_data16 = rtase_r16(tp, RTASE_MTPS);
> + u16p_replace_bits(&reg_data16, 0x4, TAG_NUM_SEL_MASK);
> + rtase_w16(tp, RTASE_MTPS, reg_data16);
> +
> + rtase_set_tx_queue(tp);
> +
> + /* TOK condition */
> + rtase_w16(tp, RTASE_TOKSEL, 0x5555);
> +
> + rtase_tally_counter_addr_fill(tp);
> + rtase_desc_addr_fill(tp);
> + rtase_hw_set_features(dev, dev->features);
> +
> + /* enable flow control */
> + reg_data16 = rtase_r16(tp, RTASE_CPLUS_CMD);
> + reg_data16 |= (FORCE_TXFLOW_EN | FORCE_RXFLOW_EN);
> + rtase_w16(tp, RTASE_CPLUS_CMD, reg_data16);
> + /* set Near FIFO Threshold - rx missed issue. */
> + rtase_w16(tp, RTASE_RFIFONFULL, 0x190);
> +
> + rtase_w16(tp, RTASE_RMS, tp->rx_buf_sz);
> +
> + /* set Rx packet filter */
> + rtase_hw_set_rx_packet_filter(dev);
> +}
> +
> +static void rtase_nic_enable(const struct net_device *dev)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + u16 rcr = rtase_r16(tp, RTASE_RX_CONFIG_1);
> + u8 val;
> +
> + /* PCIe PLA reload */
> + rtase_w16(tp, RTASE_RX_CONFIG_1, rcr & ~PCIE_RELOAD_En);
> + rtase_w16(tp, RTASE_RX_CONFIG_1, rcr | PCIE_RELOAD_En);
> +
> + /* set PCIe TE & RE */
> + val = rtase_r8(tp, RTASE_CHIP_CMD);
> + rtase_w8(tp, RTASE_CHIP_CMD, val | TE | RE);
> +
> + /* clear rxdv_gated_en */
> + val = rtase_r8(tp, RTASE_MISC);
> + rtase_w8(tp, RTASE_MISC, val & ~RX_DV_GATE_EN);
> +}
> +
> +static void rtase_enable_hw_interrupt(const struct rtase_private *tp)
> +{
> + const struct rtase_int_vector *ivec = &tp->int_vector[0];
> + u32 i;
> +
> + rtase_w32(tp, ivec->imr_addr, ivec->imr);
> +
> + for (i = 1; i < tp->int_nums; i++) {
> + ivec = &tp->int_vector[i];
> + rtase_w16(tp, ivec->imr_addr, ivec->imr);
> + }
> +}
> +
> +static void rtase_hw_start(const struct net_device *dev)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> +
> + rtase_nic_enable(dev);
> + rtase_enable_hw_interrupt(tp);
> +}
> +
> +/* the interrupt handler does RXQ0 and TXQ0, TXQ4~7 interrutp status
> + */
> +static irqreturn_t rtase_interrupt(int irq, void *dev_instance)
> +{
> + const struct rtase_private *tp;
> + struct rtase_int_vector *ivec;
> + u32 status;
> +
> + ivec = dev_instance;
> + tp = ivec->tp;
> + status = rtase_r32(tp, ivec->isr_addr);
> +
> + rtase_w32(tp, ivec->imr_addr, 0x0);
> + rtase_w32(tp, ivec->isr_addr, status & ~FOVW);
> +
> + if (napi_schedule_prep(&ivec->napi))
> + __napi_schedule(&ivec->napi);
> +
> + return IRQ_HANDLED;
> +}
> +
> +/* the interrupt handler does RXQ1&TXQ1 or RXQ2&TXQ2 or RXQ3&TXQ3 interrupt
> + * status according to interrupt vector
> + */
> +static irqreturn_t rtase_q_interrupt(int irq, void *dev_instance)
> +{
> + const struct rtase_private *tp;
> + struct rtase_int_vector *ivec;
> + u16 status;
> +
> + ivec = dev_instance;
> + tp = ivec->tp;
> + status = rtase_r16(tp, ivec->isr_addr);
> +
> + rtase_w16(tp, ivec->imr_addr, 0x0);
> + rtase_w16(tp, ivec->isr_addr, status);
> +
> + if (napi_schedule_prep(&ivec->napi))
> + __napi_schedule(&ivec->napi);
> +
> + return IRQ_HANDLED;
> +}
> +
> +static int rtase_poll(struct napi_struct *napi, int budget)
> +{
> + const struct rtase_int_vector *ivec;
> + const struct rtase_private *tp;
> + struct rtase_ring *ring;
> + int total_workdone = 0;
> +
> + ivec = container_of(napi, struct rtase_int_vector, napi);
> + tp = ivec->tp;
> +
> + list_for_each_entry(ring, &ivec->ring_list, ring_entry) {
> + total_workdone += ring->ring_handler(ring, budget);
> + }
> +
> + if (total_workdone >= budget)
> + return budget;
> +
> + if (napi_complete_done(napi, total_workdone)) {
> + if (!ivec->index)
> + rtase_w32(tp, ivec->imr_addr, ivec->imr);
> + else
> + rtase_w16(tp, ivec->imr_addr, ivec->imr);
> + }
> +
> + return total_workdone;
> +}
> +
> +static int rtase_open(struct net_device *dev)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + struct rtase_int_vector *ivec = &tp->int_vector[0];
> + const struct pci_dev *pdev = tp->pdev;
> + int ret;
> + u16 i;
> +
> + rtase_set_rxbufsize(tp);
> +
> + ret = rtase_alloc_desc(tp);
> + if (ret)
> + goto err_free_all_allocated_mem;
> +
> + ret = rtase_init_ring(dev);
> + if (ret)
> + goto err_free_all_allocated_mem;
> +
> + INIT_DELAYED_WORK(&tp->task, NULL);
> +

Why not just init once in probe()?

> + rtase_hw_config(dev);
> +
> + if (tp->sw_flag & SWF_MSIX_ENABLED) {
> + ret = request_irq(ivec->irq, rtase_interrupt, 0,
> + dev->name, ivec);
> +
> + /* request other interrupts to handle multiqueue */
> + for (i = 1; i < tp->int_nums; i++) {
> + if (ret)
> + continue;
> +
> + ivec = &tp->int_vector[i];
> + if (ivec->status != 1)
> + continue;
> +
> + snprintf(ivec->name, sizeof(ivec->name), "%s_int%i", tp->dev->name, i);
> + ret = request_irq(ivec->irq, rtase_q_interrupt, 0,
> + ivec->name, ivec);
> + }
> + } else if (tp->sw_flag & SWF_MSI_ENABLED) {
> + ret = request_irq(pdev->irq, rtase_interrupt, 0, dev->name,
> + ivec);
> + } else {
> + ret = request_irq(pdev->irq, rtase_interrupt, IRQF_SHARED,
> + dev->name, ivec);
> + }
> +
> + if (ret != 0) {
> + netdev_err(dev, "can't request MSIX interrupt. Error: %d\n", ret);
> + goto err_free_all_allocated_mem;
> + }
> +
> + rtase_hw_start(dev);
> +
> + netif_carrier_on(dev);
> + netif_wake_queue(dev);
> +
> + goto out;
> +
> +err_free_all_allocated_mem:
> + rtase_free_desc(tp);
> +
> +out:
> + return ret;
> +}
> +
> +static void rtase_down(struct net_device *dev)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + u32 i;
> +
> + netif_stop_queue(dev);
> +
> + /* give a racing hard_start_xmit a few cycles to complete */
> + synchronize_rcu();
> +
> + netif_carrier_off(dev);
> +
> + rtase_hw_reset(dev);
> +
> + for (i = 0; i < tp->int_nums; i++)
> + synchronize_irq(tp->int_vector[i].irq);
> +
> + rtase_tx_clear(tp);
> +
> + rtase_rx_clear(tp);
> +}
> +
> +static int rtase_close(struct net_device *dev)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + const struct pci_dev *pdev = tp->pdev;
> + u32 i;
> +
> + rtase_down(dev);
> +
> + if (tp->sw_flag & SWF_MSIX_ENABLED) {
> + for (i = 0; i < tp->int_nums; i++)
> + free_irq(tp->int_vector[i].irq, &tp->int_vector[i]);
> +
> + } else {
> + free_irq(pdev->irq, &tp->int_vector[0]);
> + }
> +
> + rtase_free_desc(tp);
> +
> + return 0;
> +}
> +
> +static u32 rtase_tx_vlan_tag(const struct rtase_private *tp,
> + const struct sk_buff *skb)
> +{
> + return (skb_vlan_tag_present(skb)) ?
> + (TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb))) : 0x00;
> +}
> +
> +static u32 rtase_tx_csum(struct sk_buff *skb, const struct net_device *dev)
> +{
> + u8 ip_protocol;
> + u32 csum_cmd;
> +
> + switch (vlan_get_protocol(skb)) {
> + case htons(ETH_P_IP):
> + csum_cmd = TX_IPCS_C;
> + ip_protocol = ip_hdr(skb)->protocol;
> + break;
> +
> + case htons(ETH_P_IPV6):
> + csum_cmd = TX_IPV6F_C;
> + ip_protocol = ipv6_hdr(skb)->nexthdr;
> + break;
> +
> + default:
> + ip_protocol = IPPROTO_RAW;
> + break;
> + }
> +
> + if (ip_protocol == IPPROTO_TCP)
> + csum_cmd |= TX_TCPCS_C;
> + else if (ip_protocol == IPPROTO_UDP)
> + csum_cmd |= TX_UDPCS_C;
> + else
> + WARN_ON_ONCE(1);
> +
> + csum_cmd |= u32_encode_bits(skb_transport_offset(skb), TCPHO_MASK);
> +
> + return csum_cmd;
> +}
> +
> +static int rtase_xmit_frags(struct rtase_ring *ring, struct sk_buff *skb,
> + u32 opts1, u32 opts2)
> +{
> + const struct skb_shared_info *info = skb_shinfo(skb);
> + const struct rtase_private *tp = ring->ivec->tp;
> + const u8 nr_frags = info->nr_frags;
> + struct tx_desc *txd = NULL;
> + u32 cur_frag, entry;
> + u64 pkt_len_cnt = 0;
> +
> + entry = ring->cur_idx;
> + for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
> + const skb_frag_t *frag = &info->frags[cur_frag];
> + dma_addr_t mapping;
> + u32 status, len;
> + void *addr;
> +
> + entry = (entry + 1) % NUM_DESC;
> +
> + txd = ring->desc + sizeof(struct tx_desc) * entry;
> + len = skb_frag_size(frag);
> + addr = skb_frag_address(frag);
> + mapping = dma_map_single(&tp->pdev->dev, addr, len,
> + DMA_TO_DEVICE);
> +
> + if (unlikely(dma_mapping_error(&tp->pdev->dev, mapping))) {
> + if (unlikely(net_ratelimit()))
> + netdev_err(tp->dev,
> + "Failed to map TX fragments DMA!\n");
> +
> + goto err_out;
> + }
> +
> + if (((entry + 1) % NUM_DESC) == 0)
> + status = (opts1 | len | RING_END);
> + else
> + status = opts1 | len;
> +
> + if (cur_frag == (nr_frags - 1)) {
> + ring->skbuff[entry] = skb;
> + status |= TX_LAST_FRAG;
> + }
> +
> + ring->mis.len[entry] = len;
> + txd->addr = cpu_to_le64(mapping);
> + txd->opts2 = cpu_to_le32(opts2);
> +
> + /* make sure the operating fields have been updated */
> + wmb();
> + txd->opts1 = cpu_to_le32(status);
> + pkt_len_cnt += len;
> + }
> +
> + return cur_frag;
> +
> +err_out:
> + rtase_tx_clear_range(ring, ring->cur_idx + 1, cur_frag);
> + return -EIO;
> +}
> +
> +static netdev_tx_t rtase_start_xmit(struct sk_buff *skb,
> + struct net_device *dev)
> +{
> + struct skb_shared_info *shinfo = skb_shinfo(skb);
> + struct rtase_private *tp = netdev_priv(dev);
> + u32 q_idx, entry, len, opts1, opts2;
> + u32 mss = shinfo->gso_size;
> + struct rtase_ring *ring;
> + struct tx_desc *txd;
> + dma_addr_t mapping;
> + bool stop_queue;
> + int frags;
> +
> + /* multiqueues */
> + q_idx = skb_get_queue_mapping(skb);
> + ring = &tp->tx_ring[q_idx];
> +
> + if (unlikely(!rtase_tx_avail(ring))) {
> + if (net_ratelimit())
> + netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
> + goto err_stop;
> + }
> +
> + entry = ring->cur_idx % NUM_DESC;
> + txd = ring->desc + sizeof(struct tx_desc) * entry;
> +
> + opts1 = DESC_OWN;
> + opts2 = rtase_tx_vlan_tag(tp, skb);
> +
> + /* tcp segmentation offload (or tcp large send) */
> + if (mss) {
> + if (shinfo->gso_type & SKB_GSO_TCPV4) {
> + opts1 |= GIANT_SEND_V4;
> + } else if (shinfo->gso_type & SKB_GSO_TCPV6) {
> + if (skb_cow_head(skb, 0))
> + goto err_dma_0;
> +
> + tcp_v6_gso_csum_prep(skb);
> + opts1 |= GIANT_SEND_V6;
> + } else {
> + WARN_ON_ONCE(1);
> + }
> +
> + opts1 |= u32_encode_bits(skb_transport_offset(skb), TCPHO_MASK);
> + opts2 |= u32_encode_bits(mss, MSS_MASK);
> + } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
> + opts2 |= rtase_tx_csum(skb, dev);
> + }
> +
> + frags = rtase_xmit_frags(ring, skb, opts1, opts2);
> + if (unlikely(frags < 0))
> + goto err_dma_0;
> +
> + if (frags) {
> + len = skb_headlen(skb);
> + opts1 |= TX_FIRST_FRAG;
> + } else {
> + len = skb->len;
> + ring->skbuff[entry] = skb;
> + opts1 |= TX_FIRST_FRAG | TX_LAST_FRAG;
> + }
> +
> + if (((entry + 1) % NUM_DESC) == 0)
> + opts1 |= (len | RING_END);
> + else
> + opts1 |= len;
> +
> + mapping = dma_map_single(&tp->pdev->dev, skb->data, len,
> + DMA_TO_DEVICE);
> +
> + if (unlikely(dma_mapping_error(&tp->pdev->dev, mapping))) {
> + if (unlikely(net_ratelimit()))
> + netdev_err(dev, "Failed to map TX DMA!\n");
> +
> + goto err_dma_1;
> + }
> +
> + ring->mis.len[entry] = len;
> + txd->addr = cpu_to_le64(mapping);
> + txd->opts2 = cpu_to_le32(opts2);
> + txd->opts1 = cpu_to_le32(opts1 & ~DESC_OWN);
> +
> + /* make sure the operating fields have been updated */
> + wmb();
> +
> + txd->opts1 = cpu_to_le32(opts1);
> +
> + skb_tx_timestamp(skb);
> +
> + /* tx needs to see descriptor changes before updated cur_idx */
> + smp_wmb();
> +
> + WRITE_ONCE(ring->cur_idx, ring->cur_idx + frags + 1);
> +
> + stop_queue = !rtase_tx_avail(ring);
> + if (unlikely(stop_queue))
> + netif_stop_subqueue(dev, q_idx);
> +
> + /* set polling bit */
> + rtase_w8(tp, RTASE_TPPOLL, BIT(ring->index));
> +
> + if (unlikely(stop_queue)) {
> + /* make sure cur_idx and dirty_idx have been updated */
> + smp_rmb();
> + if (rtase_tx_avail(ring))
> + netif_start_subqueue(dev, q_idx);
> + }
> +
> + return NETDEV_TX_OK;
> +
> +err_dma_1:
> + ring->skbuff[entry] = NULL;
> + rtase_tx_clear_range(ring, ring->cur_idx + 1, frags);
> +
> +err_dma_0:
> + dev->stats.tx_dropped++;
> + dev_kfree_skb_any(skb);
> + return NETDEV_TX_OK;
> +
> +err_stop:
> + netif_stop_queue(dev);
> + dev->stats.tx_dropped++;
> + return NETDEV_TX_BUSY;
> +}
> +
> +static void rtase_set_rx_mode(struct net_device *dev)
> +{
> + rtase_hw_set_rx_packet_filter(dev);
> +}
> +
> +static void rtase_enable_eem_write(const struct rtase_private *tp)
> +{
> + u8 val;
> +
> + val = rtase_r8(tp, RTASE_EEM);
> + rtase_w8(tp, RTASE_EEM, val | EEM_UNLOCK);
> +}
> +
> +static void rtase_disable_eem_write(const struct rtase_private *tp)
> +{
> + u8 val;
> +
> + val = rtase_r8(tp, RTASE_EEM);
> + rtase_w8(tp, RTASE_EEM, val & ~EEM_UNLOCK);
> +}
> +
> +static void rtase_rar_set(const struct rtase_private *tp, const u8 *addr)
> +{
> + u32 rar_low, rar_high;
> +
> + rar_low = (u32)addr[0] | ((u32)addr[1] << 8) |
> + ((u32)addr[2] << 16) | ((u32)addr[3] << 24);
> +
> + rar_high = (u32)addr[4] | ((u32)addr[5] << 8);
> +
> + rtase_enable_eem_write(tp);
> + rtase_w32(tp, RTASE_MAC0, rar_low);
> + rtase_w32(tp, RTASE_MAC4, rar_high);
> + rtase_disable_eem_write(tp);
> + rtase_w16(tp, RTASE_LBK_CTRL, LBK_ATLD | LBK_CLR);
> +}
> +
> +static int rtase_set_mac_address(struct net_device *dev, void *p)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + int ret;
> +
> + ret = eth_mac_addr(dev, p);
> + if (ret)
> + return ret;
> +
> + rtase_rar_set(tp, dev->dev_addr);
> +
> + return 0;
> +}
> +
> +static int rtase_change_mtu(struct net_device *dev, int new_mtu)
> +{
> + dev->mtu = new_mtu;
> +
> + netdev_update_features(dev);
> +
> + return 0;
> +}
> +
> +static void rtase_wait_for_quiescence(const struct net_device *dev)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + struct rtase_int_vector *ivec;
> + u32 i;
> +
> + for (i = 0; i < tp->int_nums; i++) {
> + ivec = &tp->int_vector[i];
> + synchronize_irq(ivec->irq);
> + /* wait for any pending NAPI task to complete */
> + napi_disable(&ivec->napi);
> + }
> +
> + rtase_irq_dis_and_clear(tp);
> +
> + for (i = 0; i < tp->int_nums; i++) {
> + ivec = &tp->int_vector[i];
> + napi_enable(&ivec->napi);
> + }
> +}
> +
> +static void rtase_sw_reset(struct net_device *dev)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + int ret;
> +
> + netif_stop_queue(dev);
> + netif_carrier_off(dev);
> + rtase_hw_reset(dev);
> +
> + /* let's wait a bit while any (async) irq lands on */
> + rtase_wait_for_quiescence(dev);
> + rtase_tx_clear(tp);
> + rtase_rx_clear(tp);
> +
> + ret = rtase_init_ring(dev);
> + if (ret) {
> + netdev_err(dev, "unable to init ring\n");
> + rtase_free_desc(tp);
> + return;
> + }
> +
> + rtase_hw_config(dev);
> + /* always link, so start to transmit & receive */
> + rtase_hw_start(dev);
> +
> + netif_carrier_on(dev);
> + netif_wake_queue(dev);
> +}
> +
> +static void rtase_dump_tally_counter(const struct rtase_private *tp)
> +{
> + dma_addr_t paddr = tp->tally_paddr;
> + u32 cmd = lower_32_bits(paddr);
> + u32 val;
> + int err;
> +
> + rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(paddr));
> + rtase_w32(tp, RTASE_DTCCR0, cmd);
> + rtase_w32(tp, RTASE_DTCCR0, cmd | COUNTER_DUMP);
> +
> + err = read_poll_timeout(rtase_r32, val, !(val & COUNTER_DUMP), 10, 250,
> + false, tp, RTASE_DTCCR0);
> +
> + if (err == -ETIMEDOUT)
> + netdev_err(tp->dev, "error occurred in dump tally counter\n");
> +}
> +
> +static void rtase_dump_state(const struct net_device *dev)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + const struct rtase_counters *counters;
> + int max_reg_size = RTASE_PCI_REGS_SIZE;
> + const struct rtase_ring *ring;
> + u32 dword_rd;
> + int n = 0;
> +
> + ring = &tp->tx_ring[0];
> + netdev_err(dev, "Tx descriptor info:\n");
> + netdev_err(dev, "Tx curIdx = 0x%x\n", ring->cur_idx);
> + netdev_err(dev, "Tx dirtyIdx = 0x%x\n", ring->dirty_idx);
> + netdev_err(dev, "Tx phyAddr = 0x%llx\n", ring->phy_addr);
> +
> + ring = &tp->rx_ring[0];
> + netdev_err(dev, "Rx descriptor info:\n");
> + netdev_err(dev, "Rx curIdx = 0x%x\n", ring->cur_idx);
> + netdev_err(dev, "Rx dirtyIdx = 0x%x\n", ring->dirty_idx);
> + netdev_err(dev, "Rx phyAddr = 0x%llx\n", ring->phy_addr);
> +
> + netdev_err(dev, "Device Registers:\n");
> + netdev_err(dev, "Chip Command = 0x%02x\n", rtase_r8(tp, RTASE_CHIP_CMD));
> + netdev_err(dev, "IMR = %08x\n", rtase_r32(tp, RTASE_IMR0));
> + netdev_err(dev, "ISR = %08x\n", rtase_r32(tp, RTASE_ISR0));
> + netdev_err(dev, "Boot Ctrl Reg(0xE004) = %04x\n",
> + rtase_r16(tp, RTASE_BOOT_CTL));
> + netdev_err(dev, "EPHY ISR(0xE014) = %04x\n",
> + rtase_r16(tp, RTASE_EPHY_ISR));
> + netdev_err(dev, "EPHY IMR(0xE016) = %04x\n",
> + rtase_r16(tp, RTASE_EPHY_IMR));
> + netdev_err(dev, "CLKSW SET REG(0xE018) = %04x\n",
> + rtase_r16(tp, RTASE_CLKSW_SET));
> +
> + netdev_err(dev, "Dump PCI Registers:\n");
> +
> + while (n < max_reg_size) {
> + if ((n % RTASE_DWORD_MOD) == 0)
> + netdev_err(tp->dev, "0x%03x:\n", n);
> +
> + pci_read_config_dword(tp->pdev, n, &dword_rd);
> + netdev_err(tp->dev, "%08x\n", dword_rd);
> + n += 4;
> + }
> +
> + netdev_err(dev, "Dump tally counter:\n");
> + counters = tp->tally_vaddr;
> + rtase_dump_tally_counter(tp);
> +
> + netdev_err(dev, "tx_packets %lld\n",
> + le64_to_cpu(counters->tx_packets));
> + netdev_err(dev, "rx_packets %lld\n",
> + le64_to_cpu(counters->rx_packets));
> + netdev_err(dev, "tx_errors %lld\n",
> + le64_to_cpu(counters->tx_errors));
> + netdev_err(dev, "rx_missed %lld\n",
> + le64_to_cpu(counters->rx_missed));
> + netdev_err(dev, "align_errors %lld\n",
> + le64_to_cpu(counters->align_errors));
> + netdev_err(dev, "tx_one_collision %lld\n",
> + le64_to_cpu(counters->tx_one_collision));
> + netdev_err(dev, "tx_multi_collision %lld\n",
> + le64_to_cpu(counters->tx_multi_collision));
> + netdev_err(dev, "rx_unicast %lld\n",
> + le64_to_cpu(counters->rx_unicast));
> + netdev_err(dev, "rx_broadcast %lld\n",
> + le64_to_cpu(counters->rx_broadcast));
> + netdev_err(dev, "rx_multicast %lld\n",
> + le64_to_cpu(counters->rx_multicast));
> + netdev_err(dev, "tx_aborted %lld\n",
> + le64_to_cpu(counters->tx_aborted));
> + netdev_err(dev, "tx_underun %lld\n",
> + le64_to_cpu(counters->tx_underun));
> +}
> +
> +static void rtase_tx_timeout(struct net_device *dev, unsigned int txqueue)
> +{
> + rtase_dump_state(dev);
> + rtase_sw_reset(dev);
> +}
> +
> +static void rtase_get_stats64(struct net_device *dev,
> + struct rtnl_link_stats64 *stats)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + const struct rtase_counters *counters = tp->tally_vaddr;
> +
> + if (!counters)
> + return;
> +
> + netdev_stats_to_stats64(stats, &dev->stats);
> + dev_fetch_sw_netstats(stats, dev->tstats);
> +
> + /* fetch additional counter values missing in stats collected by driver
> + * from tally counter
> + */
> + rtase_dump_tally_counter(tp);
> +
> + stats->tx_errors = le64_to_cpu(counters->tx_errors);
> + stats->collisions = le32_to_cpu(counters->tx_multi_collision);
> + stats->tx_aborted_errors = le16_to_cpu(counters->tx_aborted);
> + stats->rx_missed_errors = le16_to_cpu(counters->rx_missed);
> +}
> +
> +static void rtase_enable_vlan_filter(const struct rtase_private *tp, bool enabled)
> +{
> + u16 tmp;
> +
> + if (enabled == 1) {
> + tmp = rtase_r16(tp, RTASE_FCR);
> + if (!(tmp & FCR_VLAN_FTR_EN))
> + rtase_w16(tp, RTASE_FCR, tmp | FCR_VLAN_FTR_EN);
> +
> + tmp = rtase_r16(tp, RTASE_PCPR);
> + if (!(tmp & PCPR_VLAN_FTR_EN))
> + rtase_w16(tp, RTASE_PCPR, tmp | PCPR_VLAN_FTR_EN);
> + } else {
> + tmp = rtase_r16(tp, RTASE_FCR);
> + if (tmp & FCR_VLAN_FTR_EN)
> + rtase_w16(tp, RTASE_FCR, tmp & ~FCR_VLAN_FTR_EN);
> +
> + tmp = rtase_r16(tp, RTASE_PCPR);
> + if (!(tmp & PCPR_VLAN_FTR_EN))
> + rtase_w16(tp, RTASE_PCPR, tmp & ~PCPR_VLAN_FTR_EN);
> + }
> +}
> +
> +static int rtase_vlan_rx_add_vid(struct net_device *dev, __be16 protocol,
> + u16 vid)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + u16 tmp_mem, i;
> +
> + if (be16_to_cpu(protocol) != ETH_P_8021Q)
> + return -EINVAL;
> +
> + for (i = 0; i < RTASE_VLAN_FILTER_ENTRY_NUM; i++) {
> + u16 addr, mask;
> +
> + if (!(tp->vlan_filter_ctrl & BIT(i))) {
> + tp->vlan_filter_ctrl |= BIT(i);
> + tp->vlan_filter_vid[i] = vid;
> + rtase_w32(tp, RTASE_VLAN_ENTRY_0 + i * 4,
> + vid | VLAN_ENTRY_CAREBIT);
> + /* each 16-bit register contains two VLAN entries */
> + addr = RTASE_VLAN_ENTRY_MEM_0 + (i & ~0x1);
> + mask = 0x1 << ((i & 0x1) * 8);
> + tmp_mem = rtase_r16(tp, addr);
> + tmp_mem |= mask;
> + rtase_w16(tp, addr, tmp_mem);
> + break;
> + }
> + }
> +
> + if (i == RTASE_VLAN_FILTER_ENTRY_NUM)
> + return -ENOENT;
> +
> + rtase_enable_vlan_filter(tp, true);
> +
> + return 0;
> +}
> +
> +static int rtase_vlan_rx_kill_vid(struct net_device *dev, __be16 protocol,
> + u16 vid)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + u16 tmp_mem, i;
> +
> + if (be16_to_cpu(protocol) != ETH_P_8021Q)
> + return -EINVAL;
> +
> + for (i = 0; i < RTASE_VLAN_FILTER_ENTRY_NUM; i++) {
> + u16 addr, mask;
> +
> + if (tp->vlan_filter_vid[i] == vid) {
> + tp->vlan_filter_ctrl &= ~BIT(i);
> + tp->vlan_filter_vid[i] = 0;
> + rtase_w32(tp, RTASE_VLAN_ENTRY_0 + i * 4, 0);
> +
> + /* each 16-bit register contains two VLAN entries */
> + addr = RTASE_VLAN_ENTRY_MEM_0 + (i & ~0x1);
> + mask = ~(0x1 << ((i & 0x1) * 8));
> + tmp_mem = rtase_r16(tp, addr);
> + tmp_mem &= mask;
> + rtase_w16(tp, addr, tmp_mem);
> + break;
> + }
> + }
> +
> + /* check vlan filter enabled */
> + if (!tp->vlan_filter_ctrl)
> + rtase_enable_vlan_filter(tp, false);
> +
> + return 0;
> +}
> +
> +#ifdef CONFIG_NET_POLL_CONTROLLER
> +/* Polling 'interrupt' - used by things like netconsole to send skbs
> + * without having to re-enable interrupts. It's not called while
> + * the interrupt routine is executing.
> + */
> +static void rtase_netpoll(struct net_device *dev)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + const struct pci_dev *pdev = tp->pdev;
> +
> + disable_irq(pdev->irq);
> + rtase_interrupt(pdev->irq, dev);
> + enable_irq(pdev->irq);
> +}
> +#endif
> +
> +static void rtase_set_hw_cbs(const struct rtase_private *tp, u32 queue)
> +{
> + u32 idle = tp->tx_qos[queue].idleslope * RTASE_1T_CLOCK;
> + u32 val, i;
> +
> + val = u32_encode_bits(idle / RTASE_1T_POWER, RTASE_IDLESLOPE_INT_MASK);
> + idle %= RTASE_1T_POWER;
> +
> + for (i = 1; i <= RTASE_IDLESLOPE_INT_SHIFT; i++) {
> + idle *= 2;
> + if ((idle / RTASE_1T_POWER) == 1)
> + val |= BIT(RTASE_IDLESLOPE_INT_SHIFT - i);
> +
> + idle %= RTASE_1T_POWER;
> + }
> + rtase_w32(tp, RTASE_TXQCRDT_0 + queue * 4, val);
> +}
> +
> +static void rtase_setup_tc_cbs(struct rtase_private *tp,
> + const struct tc_cbs_qopt_offload *qopt)
> +{
> + u32 queue = qopt->queue;
> +
> + tp->tx_qos[queue].hicredit = qopt->hicredit;
> + tp->tx_qos[queue].locredit = qopt->locredit;
> + tp->tx_qos[queue].idleslope = qopt->idleslope;
> + tp->tx_qos[queue].sendslope = qopt->sendslope;
> +
> + /* set hardware cbs */
> + rtase_set_hw_cbs(tp, queue);
> +}
> +
> +static int rtase_setup_tc(struct net_device *dev, enum tc_setup_type type,
> + void *type_data)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> +
> + switch (type) {
> + case TC_SETUP_QDISC_CBS:
> + rtase_setup_tc_cbs(tp, type_data);
> + break;
> + default:
> + return -EOPNOTSUPP;
> + }
> +
> + return 0;
> +}
> +
> +static netdev_features_t rtase_fix_features(struct net_device *dev,
> + netdev_features_t features)
> +{
> + netdev_features_t features_fix = features;
> +
> + if (dev->mtu > MSS_MAX)
> + features_fix &= ~NETIF_F_ALL_TSO;
> +
> + if (dev->mtu > ETH_DATA_LEN)
> + features_fix &= ~NETIF_F_ALL_TSO;
> +
> + return features_fix;
> +}
> +
> +static int rtase_set_features(struct net_device *dev,
> + netdev_features_t features)
> +{
> + netdev_features_t features_set = features;
> +
> + features_set &= NETIF_F_RXALL | NETIF_F_RXCSUM |
> + NETIF_F_HW_VLAN_CTAG_RX;
> +
> + if (features_set ^ dev->features)
> + rtase_hw_set_features(dev, features_set);
> +
> + return 0;
> +}
> +
> +static const struct net_device_ops rtase_netdev_ops = {
> + .ndo_open = rtase_open,
> + .ndo_stop = rtase_close,
> + .ndo_start_xmit = rtase_start_xmit,
> + .ndo_set_rx_mode = rtase_set_rx_mode,
> + .ndo_set_mac_address = rtase_set_mac_address,
> + .ndo_change_mtu = rtase_change_mtu,
> + .ndo_tx_timeout = rtase_tx_timeout,
> + .ndo_get_stats64 = rtase_get_stats64,
> + .ndo_vlan_rx_add_vid = rtase_vlan_rx_add_vid,
> + .ndo_vlan_rx_kill_vid = rtase_vlan_rx_kill_vid,
> +#ifdef CONFIG_NET_POLL_CONTROLLER
> + .ndo_poll_controller = rtase_netpoll,
> +#endif
> + .ndo_setup_tc = rtase_setup_tc,
> + .ndo_fix_features = rtase_fix_features,
> + .ndo_set_features = rtase_set_features,
> +};
> +
> +static void rtase_get_mac_address(struct net_device *dev)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + u8 mac_addr[ETH_ALEN] __aligned(2) = {};
> + u32 i;
> +
> + for (i = 0; i < ETH_ALEN; i++)
> + mac_addr[i] = rtase_r8(tp, RTASE_MAC0 + i);
> +
> + if (!is_valid_ether_addr(mac_addr)) {
> + eth_random_addr(mac_addr);
> + dev->addr_assign_type = NET_ADDR_RANDOM;
> + netdev_warn(dev, "Random ether addr %pM\n", mac_addr);
> + }
> +
> + eth_hw_addr_set(dev, mac_addr);
> + rtase_rar_set(tp, mac_addr);
> +
> + /* keep the original MAC address */
> + ether_addr_copy(tp->org_mac_addr, dev->dev_addr);
> + ether_addr_copy(dev->perm_addr, dev->dev_addr);
> +}
> +
> +static void rtase_get_drvinfo(struct net_device *dev,
> + struct ethtool_drvinfo *drvinfo)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> +
> + strscpy(drvinfo->driver, KBUILD_MODNAME, 32);
> + strscpy(drvinfo->bus_info, pci_name(tp->pdev), 32);
> +}
> +
> +static int rtase_get_settings(struct net_device *dev,
> + struct ethtool_link_ksettings *cmd)
> +{
> + u32 supported = SUPPORTED_MII | SUPPORTED_Pause | SUPPORTED_Asym_Pause;
> +
> + ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
> + supported);
> + cmd->base.speed = SPEED_5000;
> + cmd->base.duplex = DUPLEX_FULL;
> + cmd->base.port = PORT_MII;
> + cmd->base.autoneg = AUTONEG_DISABLE;
> +
> + return 0;
> +}
> +
> +static void rtase_get_pauseparam(struct net_device *dev,
> + struct ethtool_pauseparam *pause)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + u16 value = rtase_r16(tp, RTASE_CPLUS_CMD);
> +
> + pause->autoneg = AUTONEG_DISABLE;
> +
> + if ((value & (FORCE_TXFLOW_EN | FORCE_RXFLOW_EN)) ==
> + (FORCE_TXFLOW_EN | FORCE_RXFLOW_EN)) {
> + pause->rx_pause = 1;
> + pause->tx_pause = 1;
> + } else if ((value & FORCE_TXFLOW_EN)) {
> + pause->tx_pause = 1;
> + } else if ((value & FORCE_RXFLOW_EN)) {
> + pause->rx_pause = 1;
> + }
> +}
> +
> +static int rtase_set_pauseparam(struct net_device *dev,
> + struct ethtool_pauseparam *pause)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> + u16 value = rtase_r16(tp, RTASE_CPLUS_CMD);
> +
> + if (pause->autoneg)
> + return -EOPNOTSUPP;
> +
> + value &= ~(FORCE_TXFLOW_EN | FORCE_RXFLOW_EN);
> +
> + if (pause->tx_pause)
> + value |= FORCE_TXFLOW_EN;
> +
> + if (pause->rx_pause)
> + value |= FORCE_RXFLOW_EN;
> +
> + rtase_w16(tp, RTASE_CPLUS_CMD, value);
> + return 0;
> +}
> +
> +static const char rtase_gstrings[][ETH_GSTRING_LEN] = {
> + "tx_packets",
> + "rx_packets",
> + "tx_errors",
> + "rx_errors",
> + "rx_missed",
> + "align_errors",
> + "tx_single_collisions",
> + "tx_multi_collisions",
> + "unicast",
> + "broadcast",
> + "multicast",
> + "tx_aborted",
> + "tx_underrun",
> +};
> +
> +static void rtase_get_strings(struct net_device *dev, u32 stringset, u8 *data)
> +{
> + switch (stringset) {
> + case ETH_SS_STATS:
> + memcpy(data, *rtase_gstrings, sizeof(rtase_gstrings));
> + break;
> + }
> +}
> +
> +static int rtase_get_sset_count(struct net_device *dev, int sset)
> +{
> + int ret = -EOPNOTSUPP;
> +
> + switch (sset) {
> + case ETH_SS_STATS:
> + ret = ARRAY_SIZE(rtase_gstrings);
> + break;
> + }
> +
> + return ret;
> +}
> +
> +static void rtase_get_ethtool_stats(struct net_device *dev,
> + struct ethtool_stats *stats, u64 *data)
> +{
> + struct rtase_private *tp = netdev_priv(dev);
> + const struct rtase_counters *counters;
> +
> + ASSERT_RTNL();
> +
> + counters = tp->tally_vaddr;
> + if (!counters)
> + return;
> +
> + rtase_dump_tally_counter(tp);
> +
> + data[0] = le64_to_cpu(counters->tx_packets);
> + data[1] = le64_to_cpu(counters->rx_packets);
> + data[2] = le64_to_cpu(counters->tx_errors);
> + data[3] = le32_to_cpu(counters->rx_errors);
> + data[4] = le16_to_cpu(counters->rx_missed);
> + data[5] = le16_to_cpu(counters->align_errors);
> + data[6] = le32_to_cpu(counters->tx_one_collision);
> + data[7] = le32_to_cpu(counters->tx_multi_collision);
> + data[8] = le64_to_cpu(counters->rx_unicast);
> + data[9] = le64_to_cpu(counters->rx_broadcast);
> + data[10] = le32_to_cpu(counters->rx_multicast);
> + data[11] = le16_to_cpu(counters->tx_aborted);
> + data[12] = le16_to_cpu(counters->tx_underun);
> +}
> +
> +static const struct ethtool_ops rtase_ethtool_ops = {
> + .get_drvinfo = rtase_get_drvinfo,
> + .get_link = ethtool_op_get_link,
> + .get_link_ksettings = rtase_get_settings,
> + .get_pauseparam = rtase_get_pauseparam,
> + .set_pauseparam = rtase_set_pauseparam,
> + .get_strings = rtase_get_strings,
> + .get_sset_count = rtase_get_sset_count,
> + .get_ethtool_stats = rtase_get_ethtool_stats,
> + .get_ts_info = ethtool_op_get_ts_info,
> +};
> +
> +static void rtase_init_netdev_ops(struct net_device *dev)
> +{
> + dev->netdev_ops = &rtase_netdev_ops;
> + dev->ethtool_ops = &rtase_ethtool_ops;
> +}
> +
> +static void rtase_reset_interrupt(struct pci_dev *pdev,
> + const struct rtase_private *tp)
> +{
> + if (tp->sw_flag & SWF_MSIX_ENABLED)
> + pci_disable_msix(pdev);
> + else
> + pci_disable_msi(pdev);
> +}
> +
> +static int rtase_alloc_msix(struct pci_dev *pdev, struct rtase_private *tp)
> +{
> + int ret;
> + u16 i;
> +
> + memset(tp->msix_entry, 0x0, RTASE_NUM_MSIX * sizeof(struct msix_entry));
> +
> + for (i = 0; i < RTASE_NUM_MSIX; i++)
> + tp->msix_entry[i].entry = i;
> +
> + ret = pci_enable_msix_range(pdev, tp->msix_entry, tp->int_nums,
> + tp->int_nums);
> +
> + if (ret == tp->int_nums) {
> + for (i = 0; i < tp->int_nums; i++) {
> + tp->int_vector[i].irq = pci_irq_vector(pdev, i);
> + tp->int_vector[i].status = 1;
> + }
> + }
> +
> + return ret;
> +}
> +
> +static int rtase_alloc_interrupt(struct pci_dev *pdev,
> + struct rtase_private *tp)
> +{
> + int ret;
> +
> + ret = rtase_alloc_msix(pdev, tp);
> + if (ret != tp->int_nums) {
> + ret = pci_enable_msi(pdev);
> + if (ret)
> + dev_err(&pdev->dev,
> + "unable to alloc interrupt.(MSI)\n");
> + else
> + tp->sw_flag |= SWF_MSI_ENABLED;
> + } else {
> + tp->sw_flag |= SWF_MSIX_ENABLED;
> + }
> +
> + return ret;
> +}
> +
> +static void rtase_init_hardware(const struct rtase_private *tp)
> +{
> + u16 i;
> +
> + for (i = 0; i < RTASE_VLAN_FILTER_ENTRY_NUM; i++)
> + rtase_w32(tp, RTASE_VLAN_ENTRY_0 + i * 4, 0);
> +}
> +
> +static void rtase_init_int_vector(struct rtase_private *tp)
> +{
> + u16 i;
> +
> + /* interrupt vector 0 */
> + tp->int_vector[0].tp = tp;
> + tp->int_vector[0].index = 0;
> + tp->int_vector[0].imr_addr = RTASE_IMR0;
> + tp->int_vector[0].isr_addr = RTASE_ISR0;
> + tp->int_vector[0].imr = ROK | RDU | TOK | TOK4 | TOK5 | TOK6 | TOK7;
> + tp->int_vector[0].poll = rtase_poll;
> +
> + memset(tp->int_vector[0].name, 0x0, sizeof(tp->int_vector[0].name));
> + INIT_LIST_HEAD(&tp->int_vector[0].ring_list);
> +
> + netif_napi_add(tp->dev, &tp->int_vector[0].napi,
> + tp->int_vector[0].poll);
> + napi_enable(&tp->int_vector[0].napi);
> +
> + /* interrupt vector 1 ~ 3 */
> + for (i = 1; i < tp->int_nums; i++) {
> + tp->int_vector[i].tp = tp;
> + tp->int_vector[i].index = i;
> + tp->int_vector[i].imr_addr = RTASE_IMR1 + (i - 1) * 4;
> + tp->int_vector[i].isr_addr = RTASE_ISR1 + (i - 1) * 4;
> + tp->int_vector[i].imr = Q_ROK | Q_RDU | Q_TOK;
> + tp->int_vector[i].poll = rtase_poll;
> +
> + memset(tp->int_vector[i].name, 0x0, sizeof(tp->int_vector[0].name));
> + INIT_LIST_HEAD(&tp->int_vector[i].ring_list);
> +
> + netif_napi_add(tp->dev, &tp->int_vector[i].napi,
> + tp->int_vector[i].poll);
> + napi_enable(&tp->int_vector[i].napi);
> + }
> +}
> +
> +static u16 rtase_calc_time_mitigation(u32 time_us)
> +{
> + u16 int_miti;
> + u8 msb, time_count, time_unit;
> +
> + time_us = min_t(int, time_us, MITI_MAX_TIME);
> +
> + msb = fls(time_us);
> + if (msb >= MITI_COUNT_BIT_NUM) {
> + time_unit = msb - MITI_COUNT_BIT_NUM;
> + time_count = time_us >> (msb - MITI_COUNT_BIT_NUM);
> + } else {
> + time_unit = 0;
> + time_count = time_us;
> + }
> +
> + int_miti = u16_encode_bits(time_count, MITI_TIME_COUNT_MASK) |
> + u16_encode_bits(time_unit, MITI_TIME_UNIT_MASK);
> +
> + return int_miti;
> +}
> +
> +static u16 rtase_calc_packet_num_mitigation(u16 pkt_num)
> +{
> + u16 int_miti;
> + u8 msb, pkt_num_count, pkt_num_unit;
> +
> + pkt_num = min_t(int, pkt_num, MITI_MAX_PKT_NUM);
> +
> + if (pkt_num > 60) {
> + pkt_num_unit = MITI_MAX_PKT_NUM_IDX;
> + pkt_num_count = pkt_num / MITI_MAX_PKT_NUM_UNIT;
> + } else {
> + msb = fls(pkt_num);
> + if (msb >= MITI_COUNT_BIT_NUM) {
> + pkt_num_unit = msb - MITI_COUNT_BIT_NUM;
> + pkt_num_count = pkt_num >> (msb - MITI_COUNT_BIT_NUM);
> + } else {
> + pkt_num_unit = 0;
> + pkt_num_count = pkt_num;
> + }
> + }
> +
> + int_miti = u16_encode_bits(pkt_num_count, MITI_PKT_NUM_COUNT_MASK) |
> + u16_encode_bits(pkt_num_unit, MITI_PKT_NUM_UNIT_MASK);
> +
> + return int_miti;
> +}
> +
> +static void rtase_init_software_variable(struct pci_dev *pdev,
> + struct rtase_private *tp)
> +{
> + u16 int_miti;
> +
> + tp->tx_queue_ctrl = RTASE_TXQ_CTRL;
> + tp->func_tx_queue_num = RTASE_FUNC_TXQ_NUM;
> + tp->func_rx_queue_num = RTASE_FUNC_RXQ_NUM;
> + tp->int_nums = RTASE_INTERRUPT_NUM;
> +
> + int_miti = rtase_calc_time_mitigation(MITI_DEFAULT_TIME) |
> + rtase_calc_packet_num_mitigation(MITI_DEFAULT_PKT_NUM);
> + tp->tx_int_mit = int_miti;
> + tp->rx_int_mit = int_miti;
> +
> + tp->sw_flag = 0;
> +
> + rtase_init_int_vector(tp);
> +
> + /* MTU range: 60 - hw-specific max */
> + tp->dev->min_mtu = ETH_ZLEN;
> + tp->dev->max_mtu = MAX_JUMBO_SIZE;
> +}
> +
> +static bool rtase_check_mac_version_valid(struct rtase_private *tp)
> +{
> + u32 hw_ver = rtase_r32(tp, RTASE_TX_CONFIG_0) & HW_VER_MASK;
> + bool known_ver = false;
> +
> + switch (hw_ver) {
> + case 0x00800000:
> + case 0x04000000:
> + case 0x04800000:
> + known_ver = true;
> + break;
> + }
> +
> + return known_ver;
> +}
> +
> +static int rtase_init_board(struct pci_dev *pdev, struct net_device **dev_out,
> + void __iomem **ioaddr_out)
> +{
> + struct net_device *dev;
> + void __iomem *ioaddr;
> + int ret = -ENOMEM;
> +
> + /* dev zeroed in alloc_etherdev */
> + dev = alloc_etherdev_mq(sizeof(struct rtase_private),
> + RTASE_FUNC_TXQ_NUM);
> + if (!dev)
> + goto err_out;
> +
> + SET_NETDEV_DEV(dev, &pdev->dev);
> +
> + ret = pci_enable_device(pdev);
> + if (ret < 0)
> + goto err_out_free_dev;
> +
> + /* make sure PCI base addr 1 is MMIO */
> + if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
> + ret = -ENODEV;
> + goto err_out_disable;
> + }
> +
> + /* check for weird/broken PCI region reporting */
> + if (pci_resource_len(pdev, 2) < RTASE_REGS_SIZE) {
> + ret = -ENODEV;
> + goto err_out_disable;
> + }
> +
> + ret = pci_request_regions(pdev, KBUILD_MODNAME);
> + if (ret < 0)
> + goto err_out_disable;
> +
> + if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)))
> + dev->features |= NETIF_F_HIGHDMA;
> + else if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
> + goto err_out_free_res;
> + else
> + dev_info(&pdev->dev, "DMA_BIT_MASK: 32\n");
> +
> + pci_set_master(pdev);
> +
> + /* ioremap MMIO region */
> + ioaddr = ioremap(pci_resource_start(pdev, 2),
> + pci_resource_len(pdev, 2));
> + if (!ioaddr) {
> + ret = -EIO;
> + goto err_out_free_res;
> + }
> +
> + *ioaddr_out = ioaddr;
> + *dev_out = dev;
> + goto out;
> +
> +err_out_free_res:
> + pci_release_regions(pdev);
> +
> +err_out_disable:
> + pci_disable_device(pdev);
> +
> +err_out_free_dev:
> + free_netdev(dev);
> +
> +err_out:
> + *ioaddr_out = NULL;
> + *dev_out = NULL;
> +
> +out:
> + return ret;
> +}
> +
> +static void rtase_release_board(struct pci_dev *pdev, struct net_device *dev,
> + void __iomem *ioaddr)
> +{
> + const struct rtase_private *tp = netdev_priv(dev);
> +
> + rtase_rar_set(tp, tp->org_mac_addr);
> + iounmap(ioaddr);
> +
> + if ((tp->sw_flag & SWF_MSIX_ENABLED))
> + pci_disable_msix(pdev);
> + else
> + pci_disable_msi(pdev);
> +
> + pci_release_regions(pdev);
> + pci_disable_device(pdev);
> + free_netdev(dev);
> +}
> +
> +static int rtase_init_one(struct pci_dev *pdev,
> + const struct pci_device_id *ent)
> +{
> + struct net_device *dev = NULL;
> + void __iomem *ioaddr = NULL;
> + struct rtase_private *tp;
> + int ret;
> +
> + if (!pdev->is_physfn && pdev->is_virtfn) {
> + dev_err(&pdev->dev, "This module does not support a virtual function.");
> + return -EINVAL;
> + }
> +
> + dev_dbg(&pdev->dev, "Automotive Switch Ethernet driver loaded\n");
> +
> + ret = rtase_init_board(pdev, &dev, &ioaddr);
> + if (ret != 0)
> + return ret;
> +
> + tp = netdev_priv(dev);
> + tp->mmio_addr = ioaddr;
> + tp->dev = dev;
> + tp->pdev = pdev;
> +
> + /* identify chip attached to board */
> + if (!rtase_check_mac_version_valid(tp)) {
> + return dev_err_probe(&pdev->dev, -ENODEV,
> + "unknown chip version, contact rtase maintainers (see MAINTAINERS file)\n");
> + }
> +
> + dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
> + if (!dev->tstats)
> + goto err_out_1;
> +
> + rtase_init_software_variable(pdev, tp);
> + rtase_init_hardware(tp);
> +
> + ret = rtase_alloc_interrupt(pdev, tp);
> + if (ret < 0) {
> + dev_err(&pdev->dev, "unable to alloc MSIX/MSI\n");
> + goto err_out_1;
> + }
> +
> + rtase_init_netdev_ops(dev);
> +
> + dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
> +
> + dev->features |= NETIF_F_IP_CSUM;
> + dev->features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO;
> + dev->features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
> + dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
> + NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_TX |
> + NETIF_F_HW_VLAN_CTAG_RX;
> + dev->hw_features |= NETIF_F_RXALL;
> + dev->hw_features |= NETIF_F_RXFCS;
> + dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
> + dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
> + NETIF_F_HIGHDMA;
> + dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
> + netif_set_tso_max_size(dev, LSO_64K);
> + netif_set_tso_max_segs(dev, NIC_MAX_PHYS_BUF_COUNT_LSO2);
> +
> + rtase_get_mac_address(dev);
> +
> + tp->tally_vaddr = dma_alloc_coherent(&pdev->dev,
> + sizeof(*tp->tally_vaddr),
> + &tp->tally_paddr,
> + GFP_KERNEL);
> + if (!tp->tally_vaddr) {
> + ret = -ENOMEM;
> + goto err_out;
> + }
> +
> + rtase_tally_counter_clear(tp);
> +
> + pci_set_drvdata(pdev, dev);
> +
> + ret = register_netdev(dev);
> + if (ret != 0)
> + goto err_out;
> +
> + netdev_dbg(dev, "%pM, IRQ %d\n", dev->dev_addr, dev->irq);
> +
> + netif_carrier_off(dev);
> +
> + goto out;
> +
> +err_out:
> + if (tp->tally_vaddr) {
> + dma_free_coherent(&pdev->dev,
> + sizeof(*tp->tally_vaddr),
> + tp->tally_vaddr,
> + tp->tally_paddr);
> +
> + tp->tally_vaddr = NULL;
> + }
> +
> +err_out_1:
> + rtase_release_board(pdev, dev, ioaddr);
> +
> +out:
> + return ret;
> +}
> +
> +static void rtase_remove_one(struct pci_dev *pdev)
> +{
> + struct net_device *dev = pci_get_drvdata(pdev);
> + struct rtase_private *tp = netdev_priv(dev);
> + struct rtase_int_vector *ivec;
> + u32 i;
> +
> + for (i = 0; i < tp->int_nums; i++) {
> + ivec = &tp->int_vector[i];
> + netif_napi_del(&ivec->napi);
> + }
> +
> + unregister_netdev(dev);
> + rtase_reset_interrupt(pdev, tp);
> + if (tp->tally_vaddr) {
> + dma_free_coherent(&pdev->dev,
> + sizeof(*tp->tally_vaddr),
> + tp->tally_vaddr,
> + tp->tally_paddr);
> + tp->tally_vaddr = NULL;
> + }
> +
> + rtase_release_board(pdev, dev, tp->mmio_addr);
> + pci_set_drvdata(pdev, NULL);
> +}
> +
> +static void rtase_shutdown(struct pci_dev *pdev)
> +{
> + struct net_device *dev = pci_get_drvdata(pdev);
> + const struct rtase_private *tp = netdev_priv(dev);
> +
> + if (netif_running(dev))
> + rtase_close(dev);
> +
> + rtase_reset_interrupt(pdev, tp);
> +}
> +
> +#ifdef CONFIG_PM
> +static int rtase_suspend(struct pci_dev *pdev, pm_message_t state)
> +{
> + struct net_device *dev = pci_get_drvdata(pdev);
> +
> + if (!netif_running(dev))
> + goto out;
> +
> + netif_stop_queue(dev);
> + netif_carrier_off(dev);
> + netif_device_detach(dev);
> + rtase_hw_reset(dev);
> +
> +out:
> + pci_save_state(pdev);
> +
> + return 0;
> +}
> +
> +static int rtase_resume(struct pci_dev *pdev)
> +{
> + struct net_device *dev = pci_get_drvdata(pdev);
> + struct rtase_private *tp = netdev_priv(dev);
> + int ret;
> +
> + pci_set_power_state(pdev, PCI_D0);
> + pci_restore_state(pdev);
> + pci_enable_wake(pdev, PCI_D0, 0);
> +
> + /* restore last modified mac address */
> + rtase_rar_set(tp, dev->dev_addr);
> +
> + if (!netif_running(dev))
> + goto out;
> +
> + rtase_wait_for_quiescence(dev);
> +
> + rtase_tx_clear(tp);
> + rtase_rx_clear(tp);
> +
> + ret = rtase_init_ring(dev);
> + if (ret) {
> + netdev_err(dev, "unable to init ring\n");
> + rtase_free_desc(tp);
> + return -ENOMEM;
> + }
> +
> + rtase_hw_config(dev);
> + /* always link, so start to transmit & receive */
> + rtase_hw_start(dev);
> +
> + netif_carrier_on(dev);
> + netif_wake_queue(dev);
> + netif_device_attach(dev);
> +
> +out:
> + return 0;
> +}
> +#endif /* CONFIG_PM */
> +
> +static struct pci_driver rtase_pci_driver = {
> + .name = KBUILD_MODNAME,
> + .id_table = rtase_pci_tbl,
> + .probe = rtase_init_one,
> + .remove = rtase_remove_one,
> + .shutdown = rtase_shutdown,
> +#ifdef CONFIG_PM
> + .suspend = rtase_suspend,
> + .resume = rtase_resume,
> +#endif
> +};
> +
> +module_pci_driver(rtase_pci_driver);
> diff --git a/drivers/net/ethernet/realtek/rtase/tt.h b/drivers/net/ethernet/realtek/rtase/tt.h
> new file mode 100644
> index 000000000000..9239c518c504
> --- /dev/null
> +++ b/drivers/net/ethernet/realtek/rtase/tt.h
> @@ -0,0 +1,353 @@
> +/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
> +/*
> + * rtase is the Linux device driver released for Realtek Automotive Switch
> + * controllers with PCI-Express interface.
> + *
> + * Copyright(c) 2023 Realtek Semiconductor Corp.
> + */
> +
> +#ifndef _RTASE_H_
> +#define _RTASE_H_
> +
> +/* the low 32 bit address of receive buffer must be 8-byte alignment. */
> +#define RTK_RX_ALIGN 8
> +
> +#define HW_VER_MASK 0x7C800000
> +
> +#define RX_DMA_BURST_256 4
> +#define TX_DMA_BURST_UNLIMITED 7
> +#define RX_BUF_SIZE (PAGE_SIZE - \
> + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
> +#define MAX_JUMBO_SIZE (RX_BUF_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN)
> +
> +/* 3 means InterFrameGap = the shortest one */
> +#define INTERFRAMEGAP 0x03
> +
> +#define RTASE_REGS_SIZE 256
> +#define RTASE_PCI_REGS_SIZE 0x100
> +
> +#define MULTICAST_FILTER_MASK GENMASK(30, 26)
> +#define MULTICAST_FILTER_LIMIT 32
> +
> +#define RTASE_VLAN_FILTER_ENTRY_NUM 32
> +#define RTASE_NUM_TX_QUEUE 8
> +#define RTASE_NUM_RX_QUEUE 4
> +
> +#define RTASE_TXQ_CTRL 1
> +#define RTASE_FUNC_TXQ_NUM 1
> +#define RTASE_FUNC_RXQ_NUM 1
> +#define RTASE_INTERRUPT_NUM 1
> +
> +#define MITI_TIME_COUNT_MASK GENMASK(3, 0)
> +#define MITI_TIME_UNIT_MASK GENMASK(7, 4)
> +#define MITI_DEFAULT_TIME 128
> +#define MITI_MAX_TIME 491520
> +#define MITI_PKT_NUM_COUNT_MASK GENMASK(11, 8)
> +#define MITI_PKT_NUM_UNIT_MASK GENMASK(13, 12)
> +#define MITI_DEFAULT_PKT_NUM 64
> +#define MITI_MAX_PKT_NUM_IDX 3
> +#define MITI_MAX_PKT_NUM_UNIT 16
> +#define MITI_MAX_PKT_NUM 240
> +#define MITI_COUNT_BIT_NUM 4
> +
> +#define RTASE_NUM_MSIX 4
> +
> +#define RTASE_DWORD_MOD 16
> +
> +/*****************************************************************************/
> +enum rtase_registers {
> + RTASE_MAC0 = 0x0000,
> + RTASE_MAC4 = 0x0004,
> + RTASE_MAR0 = 0x0008,
> + RTASE_MAR1 = 0x000C,
> + RTASE_DTCCR0 = 0x0010,
> + RTASE_DTCCR4 = 0x0014,
> +#define COUNTER_RESET BIT(0)
> +#define COUNTER_DUMP BIT(3)
> +
> + RTASE_FCR = 0x0018,
> +#define FCR_RXQ_MASK GENMASK(5, 4)
> +#define FCR_VLAN_FTR_EN BIT(1)
> +
> + RTASE_LBK_CTRL = 0x001A,
> +#define LBK_ATLD BIT(1)
> +#define LBK_CLR BIT(0)
> +
> + RTASE_TX_DESC_ADDR0 = 0x0020,
> + RTASE_TX_DESC_ADDR4 = 0x0024,
> + RTASE_TX_DESC_COMMAND = 0x0028,
> +#define TX_DESC_CMD_CS BIT(15)
> +#define TX_DESC_CMD_WE BIT(14)
> +
> + RTASE_BOOT_CTL = 0x6004,
> + RTASE_CLKSW_SET = 0x6018,
> +
> + RTASE_CHIP_CMD = 0x0037,
> +#define STOP_REQ BIT(7)
> +#define STOP_REQ_DONE BIT(6)
> +#define RE BIT(3)
> +#define TE BIT(2)
> +
> + RTASE_IMR0 = 0x0038,
> + RTASE_ISR0 = 0x003C,
> +#define TOK7 BIT(30)
> +#define TOK6 BIT(28)
> +#define TOK5 BIT(26)
> +#define TOK4 BIT(24)
> +#define FOVW BIT(6)
> +#define RDU BIT(4)
> +#define TOK BIT(2)
> +#define ROK BIT(0)
> +
> + RTASE_IMR1 = 0x0800,
> + RTASE_ISR1 = 0x0802,
> +#define Q_TOK BIT(4)
> +#define Q_RDU BIT(1)
> +#define Q_ROK BIT(0)
> +
> + RTASE_EPHY_ISR = 0x6014,
> + RTASE_EPHY_IMR = 0x6016,
> +
> + RTASE_TX_CONFIG_0 = 0x0040,
> +#define TX_INTER_FRAME_GAP_MASK GENMASK(25, 24)
> + /* DMA burst value (0-7) is shift this many bits */
> +#define TX_DMA_MASK GENMASK(10, 8)
> +
> + RTASE_RX_CONFIG_0 = 0x0044,
> +#define RX_SINGLE_FETCH BIT(14)
> +#define RX_SINGLE_TAG BIT(13)
> +#define RX_MX_DMA_MASK GENMASK(10, 8)
> +#define ACPT_FLOW BIT(7)
> +#define ACCEPT_ERR BIT(5)
> +#define ACCEPT_RUNT BIT(4)
> +#define ACCEPT_BROADCAST BIT(3)
> +#define ACCEPT_MULTICAST BIT(2)
> +#define ACCEPT_MYPHYS BIT(1)
> +#define ACCEPT_ALLPHYS BIT(0)
> +#define ACCEPT_MASK (ACPT_FLOW | ACCEPT_ERR | ACCEPT_RUNT | \
> + ACCEPT_BROADCAST | ACCEPT_MULTICAST | \
> + ACCEPT_MYPHYS | ACCEPT_ALLPHYS)
> +
> + RTASE_RX_CONFIG_1 = 0x0046,
> +#define RX_MAX_FETCH_DESC_MASK GENMASK(15, 11)
> +#define RX_NEW_DESC_FORMAT_EN BIT(8)
> +#define OUTER_VLAN_DETAG_EN BIT(7)
> +#define INNER_VLAN_DETAG_EN BIT(6)
> +#define PCIE_NEW_FLOW BIT(2)
> +#define PCIE_RELOAD_En BIT(0)
> +
> + RTASE_EEM = 0x0050,
> +#define EEM_UNLOCK 0xC0
> +
> + RTASE_TDFNR = 0x0057,
> + RTASE_TPPOLL = 0x0090,
> + RTASE_PDR = 0x00B0,
> + RTASE_FIFOR = 0x00D3,
> +#define TX_FIFO_EMPTY BIT(5)
> +#define RX_FIFO_EMPTY BIT(4)
> +
> + RTASE_PCPR = 0x00D8,
> +#define PCPR_VLAN_FTR_EN BIT(6)
> +
> + RTASE_RMS = 0x00DA,
> + RTASE_CPLUS_CMD = 0x00E0,
> +#define FORCE_RXFLOW_EN BIT(11)
> +#define FORCE_TXFLOW_EN BIT(10)
> +#define RX_CHKSUM BIT(5)
> +
> + RTASE_Q0_RX_DESC_ADDR0 = 0x00E4,
> + RTASE_Q0_RX_DESC_ADDR4 = 0x00E8,
> + RTASE_Q1_RX_DESC_ADDR0 = 0x4000,
> + RTASE_Q1_RX_DESC_ADDR4 = 0x4004,
> + RTASE_MTPS = 0x00EC,
> +#define TAG_NUM_SEL_MASK GENMASK(10, 8)
> +
> + RTASE_MISC = 0x00F2,
> +#define RX_DV_GATE_EN BIT(3)
> +
> + RTASE_TFUN_CTRL = 0x0400,
> +#define TX_NEW_DESC_FORMAT_EN BIT(0)
> +
> + RTASE_TX_CONFIG_1 = 0x203E,
> +#define TC_MODE_MASK GENMASK(11, 10)
> +
> + RTASE_TOKSEL = 0x2046,
> + RTASE_TXQCRDT_0 = 0x2500,
> + RTASE_RFIFONFULL = 0x4406,
> + RTASE_INT_MITI_TX = 0x0A00,
> + RTASE_INT_MITI_RX = 0x0A80,
> +
> + RTASE_VLAN_ENTRY_MEM_0 = 0x7234,
> + RTASE_VLAN_ENTRY_0 = 0xAC80,
> +};
> +
> +enum desc_status_bit {
> + DESC_OWN = BIT(31), /* Descriptor is owned by NIC */
> + RING_END = BIT(30), /* End of descriptor ring */
> +};
> +
> +enum sw_flag_content {
> + SWF_MSI_ENABLED = BIT(1),
> + SWF_MSIX_ENABLED = BIT(2),
> +};
> +
> +#define RSVD_MASK 0x3FFFC000
> +
> +struct tx_desc {
> + __le32 opts1;
> + __le32 opts2;
> + __le64 addr;
> + __le32 opts3;
> + __le32 reserved1;
> + __le32 reserved2;
> + __le32 reserved3;
> +} __packed;
> +
> +/*------ offset 0 of tx descriptor ------*/
> +#define TX_FIRST_FRAG BIT(29) /* Tx First segment of a packet */
> +#define TX_LAST_FRAG BIT(28) /* Tx Final segment of a packet */
> +#define GIANT_SEND_V4 BIT(26) /* TCP Giant Send Offload V4 (GSOv4) */
> +#define GIANT_SEND_V6 BIT(25) /* TCP Giant Send Offload V6 (GSOv6) */
> +#define TX_VLAN_TAG BIT(17) /* Add VLAN tag */
> +
> +/*------ offset 4 of tx descriptor ------*/
> +#define TX_UDPCS_C BIT(31) /* Calculate UDP/IP checksum */
> +#define TX_TCPCS_C BIT(30) /* Calculate TCP/IP checksum */
> +#define TX_IPCS_C BIT(29) /* Calculate IP checksum */
> +#define TX_IPV6F_C BIT(28) /* Indicate it is an IPv6 packet */
> +
> +union rx_desc {
> + struct {
> + __le64 header_buf_addr;
> + __le32 reserved1;
> + __le32 opts_header_len;
> + __le64 addr;
> + __le32 reserved2;
> + __le32 opts1;
> + } __packed desc_cmd;
> +
> + struct {
> + __le32 reserved1;
> + __le32 reserved2;
> + __le32 rss;
> + __le32 opts4;
> + __le32 reserved3;
> + __le32 opts3;
> + __le32 opts2;
> + __le32 opts1;
> + } __packed desc_status;
> +} __packed;
> +
> +/*------ offset 28 of rx descriptor ------*/
> +#define RX_FIRST_FRAG BIT(25) /* Rx First segment of a packet */
> +#define RX_LAST_FRAG BIT(24) /* Rx Final segment of a packet */
> +#define RX_RES BIT(20)
> +#define RX_RUNT BIT(19)
> +#define RX_RWT BIT(18)
> +#define RX_CRC BIT(16)
> +#define RX_V6F BIT(31)
> +#define RX_V4F BIT(30)
> +#define RX_UDPT BIT(29)
> +#define RX_TCPT BIT(28)
> +#define RX_IPF BIT(26) /* IP checksum failed */
> +#define RX_UDPF BIT(25) /* UDP/IP checksum failed */
> +#define RX_TCPF BIT(24) /* TCP/IP checksum failed */
> +#define RX_LBK_FIFO_FULL BIT(17) /* Loopback FIFO Full */
> +#define RX_VLAN_TAG BIT(16) /* VLAN tag available */
> +
> +#define NUM_DESC 1024
> +#define RTASE_TX_RING_DESC_SIZE (NUM_DESC * sizeof(struct tx_desc))
> +#define RTASE_RX_RING_DESC_SIZE (NUM_DESC * sizeof(union rx_desc))
> +#define VLAN_ENTRY_CAREBIT 0xF0000000
> +#define VLAN_TAG_MASK GENMASK(15, 0)
> +#define RX_PKT_SIZE_MASK GENMASK(13, 0)
> +
> +/* txqos hardware definitions */
> +#define RTASE_1T_CLOCK 64
> +#define RTASE_1T_POWER 10000000
> +#define RTASE_IDLESLOPE_INT_SHIFT 25
> +#define RTASE_IDLESLOPE_INT_MASK GENMASK(31, 25)
> +
> +#define IVEC_NAME_SIZE (IFNAMSIZ + 10)
> +
> +struct rtase_int_vector {
> + struct rtase_private *tp;
> + unsigned int irq;
> + u8 status;
> + char name[IVEC_NAME_SIZE];
> + u16 index;
> + u16 imr_addr;
> + u16 isr_addr;
> + u32 imr;
> + struct list_head ring_list;
> + struct napi_struct napi;
> + int (*poll)(struct napi_struct *napi, int budget);
> +};
> +
> +struct rtase_ring {
> + struct rtase_int_vector *ivec;
> + void *desc;
> + dma_addr_t phy_addr;
> + u32 cur_idx;
> + u32 dirty_idx;
> + u16 index;
> +
> + struct sk_buff *skbuff[NUM_DESC];
> + union {
> + u32 len[NUM_DESC];
> + dma_addr_t data_phy_addr[NUM_DESC];
> + } mis;
> +
> + struct list_head ring_entry;
> + int (*ring_handler)(struct rtase_ring *ring, int budget);
> +};
> +
> +struct rtase_txqos {
> + int hicredit;
> + int locredit;
> + int idleslope;
> + int sendslope;
> +};
> +
> +struct rtase_private {
> + void __iomem *mmio_addr;
> + u32 sw_flag;
> + u32 mc_filter[2];
> +
> + struct pci_dev *pdev;
> + struct net_device *dev;
> + u32 rx_buf_sz;
> +
> + struct page_pool *page_pool;
> + struct rtase_ring tx_ring[RTASE_NUM_TX_QUEUE];
> + struct rtase_txqos tx_qos[RTASE_NUM_TX_QUEUE];
> + struct rtase_ring rx_ring[RTASE_NUM_RX_QUEUE];
> + struct rtase_counters *tally_vaddr;
> + dma_addr_t tally_paddr;
> +
> + u32 vlan_filter_ctrl;
> + u16 vlan_filter_vid[RTASE_VLAN_FILTER_ENTRY_NUM];
> +
> + struct delayed_work task;

I don't see this member anywhere used. What is it good for?
And related: Why the delayed version?

> + u8 org_mac_addr[ETH_ALEN];

How's the org_mac_addr different from perm_addr?

> + struct msix_entry msix_entry[RTASE_NUM_MSIX];
> + struct rtase_int_vector int_vector[RTASE_NUM_MSIX];
> +
> + u16 tx_queue_ctrl;
> + u16 func_tx_queue_num;
> + u16 func_rx_queue_num;
> + u16 int_nums;
> + u16 tx_int_mit;
> + u16 rx_int_mit;
> +};
> +
> +#define LSO_64K 64000
> +
> +#define NIC_MAX_PHYS_BUF_COUNT_LSO2 (16 * 4)
> +
> +#define TCPHO_MASK GENMASK(24, 18)
> +
> +#define MSS_MAX 0x07FF /* MSS value */
> +#define MSS_MASK GENMASK(28, 18)
> +
> +#endif /* _RTASE_H_ */