Re: [PATCH v4 09/11] PM: hibernate: Mix user key in encrypted hibernate

From: Kees Cook
Date: Fri Nov 04 2022 - 14:54:38 EST


On Thu, Nov 03, 2022 at 11:01:17AM -0700, Evan Green wrote:
> Usermode may have their own data protection requirements when it comes
> to encrypting the hibernate image. For example, users may want a policy
> where the hibernate image is protected by a key derived both from
> platform-level security as well as authentication data (such as a
> password or PIN). This way, even if the platform is compromised (ie a
> stolen laptop), sensitive data cannot be exfiltrated via the hibernate
> image without additional data (like the user's password).
>
> The kernel is already doing the encryption, but will be protecting its
> key with the TPM alone. Allow usermode to mix in key content of their own
> for the data portion of the hibernate image, so that the image
> encryption key is determined both by a TPM-backed secret and
> user-defined data.
>
> To mix the user key in, we hash the kernel key followed by the user key,
> and use the resulting hash as the new key. This allows usermode to mix
> in its key material without giving it too much control over what key is
> actually driving the encryption (which might be used to attack the
> secret kernel key).
>
> Limiting this to the data portion allows the kernel to receive the page
> map and prepare its giant allocation even if this user key is not yet
> available (ie the user has not yet finished typing in their password).
> Once the user key becomes available, the data portion can be pushed
> through to the kernel as well. This enables "preloading" scenarios,
> where the hibernate image is loaded off of disk while the additional
> key material (eg password) is being collected.
>
> One annoyance of the "preloading" scheme is that hibernate image memory
> is effectively double-allocated: first by the usermode process pulling
> encrypted contents off of disk and holding it, and second by the kernel
> in its giant allocation in prepare_image(). An interesting future
> optimization would be to allow the kernel to accept and store encrypted
> page data before the user key is available. This would remove the
> double allocation problem, as usermode could push the encrypted pages
> loaded from disk immediately without storing them. The kernel could defer
> decryption of the data until the user key is available, while still
> knowing the correct page locations to store the encrypted data in.
>
> Signed-off-by: Evan Green <evgreen@xxxxxxxxxxxx>
> ---
>
> (no changes since v2)
>
> Changes in v2:
> - Add missing static on snapshot_encrypted_byte_count()
> - Fold in only the used kernel key bytes to the user key.
> - Make the user key length 32 (Eric)
> - Use CRYPTO_LIB_SHA256 for less boilerplate (Eric)
>
> include/uapi/linux/suspend_ioctls.h | 15 ++-
> kernel/power/Kconfig | 1 +
> kernel/power/power.h | 1 +
> kernel/power/snapenc.c | 158 ++++++++++++++++++++++++++--
> kernel/power/snapshot.c | 5 +
> kernel/power/user.c | 4 +
> kernel/power/user.h | 12 +++
> 7 files changed, 185 insertions(+), 11 deletions(-)
>
> diff --git a/include/uapi/linux/suspend_ioctls.h b/include/uapi/linux/suspend_ioctls.h
> index b73026ef824bb9..f93a22eac52dc2 100644
> --- a/include/uapi/linux/suspend_ioctls.h
> +++ b/include/uapi/linux/suspend_ioctls.h
> @@ -25,6 +25,18 @@ struct uswsusp_key_blob {
> __u8 nonce[USWSUSP_KEY_NONCE_SIZE];
> } __attribute__((packed));
>
> +/*
> + * Allow user mode to fold in key material for the data portion of the hibernate
> + * image.
> + */
> +struct uswsusp_user_key {
> + /* Kernel returns the metadata size. */
> + __kernel_loff_t meta_size;
> + __u32 key_len;
> + __u8 key[32];

Why is this 32? (Is there a non-literal we can put here?)

> + __u32 pad;

And why the pad?

> +};
> +
> #define SNAPSHOT_IOC_MAGIC '3'
> #define SNAPSHOT_FREEZE _IO(SNAPSHOT_IOC_MAGIC, 1)
> #define SNAPSHOT_UNFREEZE _IO(SNAPSHOT_IOC_MAGIC, 2)
> @@ -42,6 +54,7 @@ struct uswsusp_key_blob {
> #define SNAPSHOT_AVAIL_SWAP_SIZE _IOR(SNAPSHOT_IOC_MAGIC, 19, __kernel_loff_t)
> #define SNAPSHOT_ALLOC_SWAP_PAGE _IOR(SNAPSHOT_IOC_MAGIC, 20, __kernel_loff_t)
> #define SNAPSHOT_ENABLE_ENCRYPTION _IOWR(SNAPSHOT_IOC_MAGIC, 21, struct uswsusp_key_blob)
> -#define SNAPSHOT_IOC_MAXNR 21
> +#define SNAPSHOT_SET_USER_KEY _IOWR(SNAPSHOT_IOC_MAGIC, 22, struct uswsusp_user_key)
> +#define SNAPSHOT_IOC_MAXNR 22
>
> #endif /* _LINUX_SUSPEND_IOCTLS_H */
> diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig
> index 2f8acbd87b34dc..35bf48b925ebf6 100644
> --- a/kernel/power/Kconfig
> +++ b/kernel/power/Kconfig
> @@ -97,6 +97,7 @@ config ENCRYPTED_HIBERNATION
> depends on HIBERNATION_SNAPSHOT_DEV
> depends on CRYPTO_AEAD2=y
> depends on TRUSTED_KEYS=y
> + select CRYPTO_LIB_SHA256
> default n
> help
> Enable support for kernel-based encryption of hibernation snapshots
> diff --git a/kernel/power/power.h b/kernel/power/power.h
> index b4f43394320961..5955e5cf692302 100644
> --- a/kernel/power/power.h
> +++ b/kernel/power/power.h
> @@ -151,6 +151,7 @@ struct snapshot_handle {
>
> extern unsigned int snapshot_additional_pages(struct zone *zone);
> extern unsigned long snapshot_get_image_size(void);
> +extern unsigned long snapshot_get_meta_page_count(void);
> extern int snapshot_read_next(struct snapshot_handle *handle);
> extern int snapshot_write_next(struct snapshot_handle *handle);
> extern void snapshot_write_finalize(struct snapshot_handle *handle);
> diff --git a/kernel/power/snapenc.c b/kernel/power/snapenc.c
> index 7ff4fc66f7500c..50167a37c5bf23 100644
> --- a/kernel/power/snapenc.c
> +++ b/kernel/power/snapenc.c
> @@ -6,6 +6,7 @@
> #include <crypto/gcm.h>
> #include <keys/trusted-type.h>
> #include <linux/key-type.h>
> +#include <crypto/sha.h>
> #include <linux/random.h>
> #include <linux/mm.h>
> #include <linux/tpm.h>
> @@ -21,6 +22,38 @@ static struct tpm_digest known_digest = { .alg_id = TPM_ALG_SHA256,
> 0xf1, 0x22, 0x38, 0x6c, 0x33, 0xb1, 0x14, 0xb7, 0xec, 0x05,
> 0x5f, 0x49}};
>
> +/* Derive a key from the kernel and user keys for data encryption. */
> +static int snapshot_use_user_key(struct snapshot_data *data)
> +{
> + u8 digest[SHA256_DIGEST_SIZE];
> + struct trusted_key_payload *payload = data->key->payload.data[0];
> + struct sha256_state sha256_state;
> +
> + /*
> + * Hash the kernel key and the user key together. This folds in the user
> + * key, but not in a way that gives the user mode predictable control
> + * over the key bits.
> + */
> + sha256_init(&sha256_state);
> + sha256_update(&sha256_state, payload->key, SNAPSHOT_ENCRYPTION_KEY_SIZE);
> + sha256_update(&sha256_state, data->user_key, sizeof(data->user_key));
> + sha256_final(&sha256_state, digest);
> + return crypto_aead_setkey(data->aead_tfm,
> + digest,
> + SNAPSHOT_ENCRYPTION_KEY_SIZE);
> +}
> +
> +/* Check to see if it's time to switch to the user key, and do it if so. */
> +static int snapshot_check_user_key_switch(struct snapshot_data *data)
> +{
> + if (data->user_key_valid && data->meta_size &&
> + data->crypt_total == data->meta_size) {
> + return snapshot_use_user_key(data);
> + }
> +
> + return 0;
> +}
> +
> /* Encrypt more data from the snapshot into the staging area. */
> static int snapshot_encrypt_refill(struct snapshot_data *data)
> {
> @@ -32,6 +65,15 @@ static int snapshot_encrypt_refill(struct snapshot_data *data)
> int pg_idx;
> int res;
>
> + if (data->crypt_total == 0) {
> + data->meta_size = snapshot_get_meta_page_count() << PAGE_SHIFT;
> +
> + } else {
> + res = snapshot_check_user_key_switch(data);
> + if (res)
> + return res;
> + }
> +
> /*
> * The first buffer is the associated data, set to the offset to prevent
> * attacks that rearrange chunks.
> @@ -42,6 +84,11 @@ static int snapshot_encrypt_refill(struct snapshot_data *data)
> for (pg_idx = 0; pg_idx < CHUNK_SIZE; pg_idx++) {
> void *buf = data->crypt_pages[pg_idx];
>
> + /* Stop at the meta page boundary to potentially switch keys. */
> + if (total &&
> + ((data->crypt_total + total) == data->meta_size))
> + break;
> +
> res = snapshot_read_next(&data->handle);
> if (res < 0)
> return res;
> @@ -114,10 +161,10 @@ static int snapshot_decrypt_drain(struct snapshot_data *data)
> sg_set_buf(&data->sg[1 + pg_idx], data->crypt_pages[pg_idx], PAGE_SIZE);
>
> /*
> - * It's possible this is the final decrypt, and there are fewer than
> - * CHUNK_SIZE pages. If this is the case we would have just written the
> - * auth tag into the first few bytes of a new page. Copy to the tag if
> - * so.
> + * It's possible this is the final decrypt, or the final decrypt of the
> + * meta region, and there are fewer than CHUNK_SIZE pages. If this is
> + * the case we would have just written the auth tag into the first few
> + * bytes of a new page. Copy to the tag if so.
> */
> if ((page_count < CHUNK_SIZE) &&
> (data->crypt_offset - total) == sizeof(data->auth_tag)) {
> @@ -172,7 +219,14 @@ static int snapshot_decrypt_drain(struct snapshot_data *data)
> total += PAGE_SIZE;
> }
>
> + if (data->crypt_total == 0)
> + data->meta_size = snapshot_get_meta_page_count() << PAGE_SHIFT;
> +
> data->crypt_total += total;
> + res = snapshot_check_user_key_switch(data);
> + if (res)
> + return res;
> +
> return 0;
> }
>
> @@ -221,8 +275,26 @@ static ssize_t snapshot_write_next_encrypted(struct snapshot_data *data,
> if (data->crypt_offset < (PAGE_SIZE * CHUNK_SIZE)) {
> size_t pg_idx = data->crypt_offset >> PAGE_SHIFT;
> size_t pg_off = data->crypt_offset & (PAGE_SIZE - 1);
> + size_t size_avail = PAGE_SIZE;
> *buf = data->crypt_pages[pg_idx] + pg_off;
> - return PAGE_SIZE - pg_off;
> +
> + /*
> + * If this is the boundary where the meta pages end, then just
> + * return enough for the auth tag.
> + */
> + if (data->meta_size && (data->crypt_total < data->meta_size)) {
> + uint64_t total_done =
> + data->crypt_total + data->crypt_offset;
> +
> + if ((total_done >= data->meta_size) &&
> + (total_done <
> + (data->meta_size + SNAPSHOT_AUTH_TAG_SIZE))) {
> +
> + size_avail = SNAPSHOT_AUTH_TAG_SIZE;
> + }
> + }
> +
> + return size_avail - pg_off;
> }
>
> /* Use offsets just beyond the size to return the tag. */
> @@ -304,9 +376,15 @@ ssize_t snapshot_write_encrypted(struct snapshot_data *data,
> break;
> }
>
> - /* Drain the encrypted buffer if it's full. */
> + /*
> + * Drain the encrypted buffer if it's full, or if we hit the end
> + * of the meta pages and need a key change.
> + */
> if ((data->crypt_offset >=
> - ((PAGE_SIZE * CHUNK_SIZE) + SNAPSHOT_AUTH_TAG_SIZE))) {
> + ((PAGE_SIZE * CHUNK_SIZE) + SNAPSHOT_AUTH_TAG_SIZE)) ||
> + (data->meta_size && (data->crypt_total < data->meta_size) &&
> + ((data->crypt_total + data->crypt_offset) ==
> + (data->meta_size + SNAPSHOT_AUTH_TAG_SIZE)))) {
>
> int rc;
>
> @@ -350,6 +428,8 @@ void snapshot_teardown_encryption(struct snapshot_data *data)
> data->crypt_pages[i] = NULL;
> }
> }
> +
> + memset(data->user_key, 0, sizeof(data->user_key));
> }
>
> static int snapshot_setup_encryption_common(struct snapshot_data *data)
> @@ -359,6 +439,7 @@ static int snapshot_setup_encryption_common(struct snapshot_data *data)
> data->crypt_total = 0;
> data->crypt_offset = 0;
> data->crypt_size = 0;
> + data->user_key_valid = false;
> memset(data->crypt_pages, 0, sizeof(data->crypt_pages));
> /* This only works once per hibernate. */
> if (data->aead_tfm)
> @@ -661,15 +742,72 @@ int snapshot_set_encryption_key(struct snapshot_data *data,
> return rc;
> }
>
> -loff_t snapshot_get_encrypted_image_size(loff_t raw_size)
> +static loff_t snapshot_encrypted_byte_count(loff_t plain_size)
> {
> - loff_t pages = raw_size >> PAGE_SHIFT;
> + loff_t pages = plain_size >> PAGE_SHIFT;
> loff_t chunks = (pages + (CHUNK_SIZE - 1)) / CHUNK_SIZE;
> /*
> * The encrypted size is the normal size, plus a stitched in
> * authentication tag for every chunk of pages.
> */
> - return raw_size + (chunks * SNAPSHOT_AUTH_TAG_SIZE);
> + return plain_size + (chunks * SNAPSHOT_AUTH_TAG_SIZE);
> +}
> +
> +static loff_t snapshot_get_meta_data_size(void)
> +{
> + loff_t pages = snapshot_get_meta_page_count();
> +
> + return snapshot_encrypted_byte_count(pages << PAGE_SHIFT);
> +}
> +
> +int snapshot_set_user_key(struct snapshot_data *data,
> + struct uswsusp_user_key __user *key)
> +{
> + struct uswsusp_user_key user_key;
> + unsigned int key_len;
> + int rc;
> + loff_t size;
> +
> + /*
> + * Return the metadata size, the number of bytes that can be fed in before
> + * the user data key is needed at resume time.
> + */
> + size = snapshot_get_meta_data_size();
> + rc = put_user(size, &key->meta_size);
> + if (rc)
> + return rc;
> +
> + rc = copy_from_user(&user_key, key, sizeof(struct uswsusp_user_key));
> + if (rc)
> + return rc;
> +
> + key_len = min_t(__u32, user_key.key_len, sizeof(data->user_key));
> + if (key_len < 8)
> + return -EINVAL;
> +
> + /* Don't allow it if it's too late. */
> + if (data->crypt_total > data->meta_size)
> + return -EBUSY;
> +
> + memset(data->user_key, 0, sizeof(data->user_key));
> + memcpy(data->user_key, user_key.key, key_len);

Is struct snapshot_data::user_key is supposed to be %NUL terminated? Or
is it just 0-padded up to 32 bytes? If the latter, it might be worth
marking struct snapshot_data::user_data with the __non_string attribute.

I don't like the dissociation of struct uswsusp_user_key::user_key and
struct snapshot_data::user_key, since a mistake here can lead to copying
kernel memory into struct snapshot_data::user_key. It would be nice to
see something like:

BUILD_BUG_ON(sizeof(data->user_key) < sizeof(user_key.key));

--
Kees Cook