Re: [PATCH] crypto: more robust crypto_memneq

From: James Yonan
Date: Mon Nov 25 2013 - 11:08:13 EST


On 24/11/2013 14:12, Cesar Eduardo Barros wrote:
Disabling compiler optimizations can be fragile, since a new
optimization could be added to -O0 or -Os that breaks the assumptions
the code is making.

Instead of disabling compiler optimizations, use a dummy inline assembly
(based on RELOC_HIDE) to block the problematic kinds of optimization,
while still allowing other optimizations to be applied to the code.

The dummy inline assembly is added after every OR, and has the
accumulator variable as its input and output. The compiler is forced to
assume that the dummy inline assembly could both depend on the
accumulator variable and change the accumulator variable, so it is
forced to compute the value correctly before the inline assembly, and
cannot assume anything about its value after the inline assembly.

This change should be enough to make crypto_memneq work correctly (with
data-independent timing) even if it is inlined at its call sites. That
can be done later in a followup patch.

Compile-tested on x86_64.

Signed-off-by: Cesar Eduardo Barros <cesarb@xxxxxxxxxxxxx>

This approach using __asm__ ("" : "=r" (var) : "0" (var)) to try to prevent compiler optimizations of var is interesting.

I like the fact that it's finer-grained than -Os and doesn't preclude inlining.

One concern would be that __asm__ could be optimized out unless __volatile__ is present.

James
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/