Re: [PATCH 09/15] x86/irq: Install posted MSI notification handler

From: Zeng Guang
Date: Fri Mar 29 2024 - 03:32:21 EST



On 1/27/2024 7:42 AM, Jacob Pan wrote:
@@ -353,6 +360,111 @@ void intel_posted_msi_init(void)
pid->nv = POSTED_MSI_NOTIFICATION_VECTOR;
pid->ndst = this_cpu_read(x86_cpu_to_apicid);
}
+
+/*
+ * De-multiplexing posted interrupts is on the performance path, the code
+ * below is written to optimize the cache performance based on the following
+ * considerations:
+ * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
+ * accessed by both CPU and IOMMU.
+ * 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
+ * for checking and clearing posted interrupt request (PIR), a 256 bit field
+ * within the PID.
+ * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
+ * line when posting interrupts and setting control bits.
+ * 4.The CPU can access the cache line a magnitude faster than the IOMMU.
+ * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
+ * cache line. The cache line states after each operation are as follows:
+ * CPU IOMMU PID Cache line state
+ * ---------------------------------------------------------------
+ *...read64 exclusive
+ *...lock xchg64 modified
+ *... post/atomic swap invalid
+ *...-------------------------------------------------------------
+ *
+ * To reduce L1 data cache miss, it is important to avoid contention with
+ * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
+ * to dispatch interrupt handlers.
+ *
+ * In addition, the code is trying to keep the cache line state consistent
+ * as much as possible. e.g. when making a copy and clearing the PIR
+ * (assuming non-zero PIR bits are present in the entire PIR), it does:
+ * read, read, read, read, xchg, xchg, xchg, xchg
+ * instead of:
+ * read, xchg, read, xchg, read, xchg, read, xchg
+ */
+static __always_inline inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
+{
+ int i, vec = FIRST_EXTERNAL_VECTOR;
+ unsigned long pir_copy[4];
+ bool handled = false;
+
+ for (i = 0; i < 4; i++)
+ pir_copy[i] = pir[i];
+
+ for (i = 0; i < 4; i++) {
+ if (!pir_copy[i])
+ continue;
+
+ pir_copy[i] = arch_xchg(pir, 0);

Here is a problem that pir_copy[i] will always be written as pir[0]. This leads to handle spurious posted MSIs later.

+ handled = true;
+ }
+
+ if (handled) {
+ for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
+ call_irq_handler(vec, regs);
+ }
+
+ return handled;
+}
+
+/*
+ * Performance data shows that 3 is good enough to harvest 90+% of the benefit
+ * on high IRQ rate workload.
+ */
+#define MAX_POSTED_MSI_COALESCING_LOOP 3
+
+/*
+ * For MSIs that are delivered as posted interrupts, the CPU notifications
+ * can be coalesced if the MSIs arrive in high frequency bursts.
+ */
+DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
+{
+ struct pt_regs *old_regs = set_irq_regs(regs);
+ struct pi_desc *pid;
+ int i = 0;
+
+ pid = this_cpu_ptr(&posted_interrupt_desc);
+
+ inc_irq_stat(posted_msi_notification_count);
+ irq_enter();
+
+ /*
+ * Max coalescing count includes the extra round of handle_pending_pir
+ * after clearing the outstanding notification bit. Hence, at most
+ * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
+ */
+ while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
+ if (!handle_pending_pir(pid->pir64, regs))
+ break;
+ }
+
+ /*
+ * Clear outstanding notification bit to allow new IRQ notifications,
+ * do this last to maximize the window of interrupt coalescing.
+ */
+ pi_clear_on(pid);
+
+ /*
+ * There could be a race of PI notification and the clearing of ON bit,
+ * process PIR bits one last time such that handling the new interrupts
+ * are not delayed until the next IRQ.
+ */
+ handle_pending_pir(pid->pir64, regs);
+
+ apic_eoi();
+ irq_exit();
+ set_irq_regs(old_regs);
}
#endif /* X86_POSTED_MSI */