Re: [PATCH] slub: avoid scanning all partial slabs in get_slabinfo()

From: Vlastimil Babka
Date: Mon Feb 19 2024 - 03:30:25 EST


On 2/18/24 20:25, David Rientjes wrote:
> On Thu, 15 Feb 2024, Jianfeng Wang wrote:
>
>> When reading "/proc/slabinfo", the kernel needs to report the number of
>> free objects for each kmem_cache. The current implementation relies on
>> count_partial() that counts the number of free objects by scanning each
>> kmem_cache_node's partial slab list and summing free objects from all
>> partial slabs in the list. This process must hold per kmem_cache_node
>> spinlock and disable IRQ. Consequently, it can block slab allocation
>> requests on other CPU cores and cause timeouts for network devices etc.,
>> if the partial slab list is long. In production, even NMI watchdog can
>> be triggered because some slab caches have a long partial list: e.g.,
>> for "buffer_head", the number of partial slabs was observed to be ~1M
>> in one kmem_cache_node. This problem was also observed by several
>> others [1-2] in the past.
>>
>> The fix is to maintain a counter of free objects for each kmem_cache.
>> Then, in get_slabinfo(), use the counter rather than count_partial()
>> when reporting the number of free objects for a slab cache. per-cpu
>> counter is used to minimize atomic or lock operation.
>>
>> Benchmark: run hackbench on a dual-socket 72-CPU bare metal machine
>> with 256 GB memory and Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3 GHz.
>> The command is "hackbench 18 thread 20000". Each group gets 10 runs.
>>
>
> This seems particularly intrusive for the common path to optimize for
> reading of /proc/slabinfo, and that's shown in the benchmark result.
>
> Could you discuss the /proc/slabinfo usage model a bit? It's not clear if
> this is being continuously read, or whether even a single read in
> isolation is problematic.
>
> That said, optimizing for reading /proc/slabinfo at the cost of runtime
> performance degradation doesn't sound like the right trade-off.

It should be possible to make this overhead smaller by restricting the
counter only to partial list slabs, as [2] did. This would keep it out of
the fast paths, where it's really not acceptable.
Note [2] used atomic_long_t and the percpu counters used here should be
lower overhead. So basically try to get the best of both attemps.

>> Results:
>> - Mainline:
>> 21.0381 +- 0.0325 seconds time elapsed ( +- 0.15% )
>> - Mainline w/ this patch:
>> 21.1878 +- 0.0239 seconds time elapsed ( +- 0.11% )
>>
>> [1] https://lore.kernel.org/linux-mm/
>> alpine.DEB.2.21.2003031602460.1537@xxxxxxxxxxxxxxx/T/
>> [2] https://lore.kernel.org/lkml/
>> alpine.DEB.2.22.394.2008071258020.55871@xxxxxxxxxxxxxxx/T/
>>
>> Signed-off-by: Jianfeng Wang <jianfeng.w.wang@xxxxxxxxxx>
>> ---
>> mm/slab.h | 4 ++++
>> mm/slub.c | 31 +++++++++++++++++++++++++++++--
>> 2 files changed, 33 insertions(+), 2 deletions(-)
>>
>> diff --git a/mm/slab.h b/mm/slab.h
>> index 54deeb0428c6..a0e7672ba648 100644
>> --- a/mm/slab.h
>> +++ b/mm/slab.h
>> @@ -11,6 +11,7 @@
>> #include <linux/memcontrol.h>
>> #include <linux/kfence.h>
>> #include <linux/kasan.h>
>> +#include <linux/percpu_counter.h>
>>
>> /*
>> * Internal slab definitions
>> @@ -277,6 +278,9 @@ struct kmem_cache {
>> unsigned int red_left_pad; /* Left redzone padding size */
>> const char *name; /* Name (only for display!) */
>> struct list_head list; /* List of slab caches */
>> +#ifdef CONFIG_SLUB_DEBUG
>> + struct percpu_counter free_objects;
>> +#endif
>> #ifdef CONFIG_SYSFS
>> struct kobject kobj; /* For sysfs */
>> #endif
>> diff --git a/mm/slub.c b/mm/slub.c
>> index 2ef88bbf56a3..44f8ded96574 100644
>> --- a/mm/slub.c
>> +++ b/mm/slub.c
>> @@ -736,6 +736,12 @@ static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
>> static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
>> static DEFINE_SPINLOCK(object_map_lock);
>>
>> +static inline void
>> +__update_kmem_cache_free_objs(struct kmem_cache *s, s64 delta)
>> +{
>> + percpu_counter_add_batch(&s->free_objects, delta, INT_MAX);
>> +}
>> +
>> static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
>> struct slab *slab)
>> {
>> @@ -1829,6 +1835,9 @@ slab_flags_t kmem_cache_flags(unsigned int object_size,
>> return flags | slub_debug_local;
>> }
>> #else /* !CONFIG_SLUB_DEBUG */
>> +static inline void
>> +__update_kmem_cache_free_objs(struct kmem_cache *s, s64 delta) {}
>> +
>> static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
>> static inline
>> void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
>> @@ -2369,6 +2378,7 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
>> slab->inuse = 0;
>> slab->frozen = 0;
>>
>> + __update_kmem_cache_free_objs(s, slab->objects);
>> account_slab(slab, oo_order(oo), s, flags);
>>
>> slab->slab_cache = s;
>> @@ -2445,6 +2455,7 @@ static void free_slab(struct kmem_cache *s, struct slab *slab)
>> call_rcu(&slab->rcu_head, rcu_free_slab);
>> else
>> __free_slab(s, slab);
>> + __update_kmem_cache_free_objs(s, -slab->objects);
>> }
>>
>> static void discard_slab(struct kmem_cache *s, struct slab *slab)
>> @@ -3859,6 +3870,8 @@ static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list
>> */
>> slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
>>
>> + if (object)
>> + __update_kmem_cache_free_objs(s, -1);
>> return object;
>> }
>>
>> @@ -4235,6 +4248,7 @@ static __always_inline void do_slab_free(struct kmem_cache *s,
>> unsigned long tid;
>> void **freelist;
>>
>> + __update_kmem_cache_free_objs(s, cnt);
>> redo:
>> /*
>> * Determine the currently cpus per cpu slab.
>> @@ -4286,6 +4300,7 @@ static void do_slab_free(struct kmem_cache *s,
>> struct slab *slab, void *head, void *tail,
>> int cnt, unsigned long addr)
>> {
>> + __update_kmem_cache_free_objs(s, cnt);
>> __slab_free(s, slab, head, tail, cnt, addr);
>> }
>> #endif /* CONFIG_SLUB_TINY */
>> @@ -4658,6 +4673,7 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
>> memcg_slab_alloc_error_hook(s, size, objcg);
>> }
>>
>> + __update_kmem_cache_free_objs(s, -i);
>> return i;
>> }
>> EXPORT_SYMBOL(kmem_cache_alloc_bulk);
>> @@ -4899,6 +4915,9 @@ void __kmem_cache_release(struct kmem_cache *s)
>> cache_random_seq_destroy(s);
>> #ifndef CONFIG_SLUB_TINY
>> free_percpu(s->cpu_slab);
>> +#endif
>> +#ifdef CONFIG_SLUB_DEBUG
>> + percpu_counter_destroy(&s->free_objects);
>> #endif
>> free_kmem_cache_nodes(s);
>> }
>> @@ -5109,6 +5128,14 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
>> s->random = get_random_long();
>> #endif
>>
>> +#ifdef CONFIG_SLUB_DEBUG
>> + int ret;
>> +
>> + ret = percpu_counter_init(&s->free_objects, 0, GFP_KERNEL);
>> + if (ret)
>> + return ret;
>> +#endif
>> +
>> if (!calculate_sizes(s))
>> goto error;
>> if (disable_higher_order_debug) {
>> @@ -7100,15 +7127,15 @@ void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
>> {
>> unsigned long nr_slabs = 0;
>> unsigned long nr_objs = 0;
>> - unsigned long nr_free = 0;
>> + unsigned long nr_free;
>> int node;
>> struct kmem_cache_node *n;
>>
>> for_each_kmem_cache_node(s, node, n) {
>> nr_slabs += node_nr_slabs(n);
>> nr_objs += node_nr_objs(n);
>> - nr_free += count_partial(n, count_free);
>> }
>> + nr_free = percpu_counter_sum_positive(&s->free_objects);
>>
>> sinfo->active_objs = nr_objs - nr_free;
>> sinfo->num_objs = nr_objs;
>> --
>> 2.42.1
>>
>>