Re: [PATCH v6 3/3] mm/gup: disallow FOLL_LONGTERM GUP-fast writing to file-backed mappings

From: Jan Kara
Date: Tue May 02 2023 - 07:20:48 EST


On Tue 02-05-23 00:11:49, Lorenzo Stoakes wrote:
> Writing to file-backed dirty-tracked mappings via GUP is inherently broken
> as we cannot rule out folios being cleaned and then a GUP user writing to
> them again and possibly marking them dirty unexpectedly.
>
> This is especially egregious for long-term mappings (as indicated by the
> use of the FOLL_LONGTERM flag), so we disallow this case in GUP-fast as
> we have already done in the slow path.
>
> We have access to less information in the fast path as we cannot examine
> the VMA containing the mapping, however we can determine whether the folio
> is anonymous and then whitelist known-good mappings - specifically hugetlb
> and shmem mappings.
>
> While we obtain a stable folio for this check, the mapping might not be, as
> a truncate could nullify it at any time. Since doing so requires mappings
> to be zapped, we can synchronise against a TLB shootdown operation.
>
> For some architectures TLB shootdown is synchronised by IPI, against which
> we are protected as the GUP-fast operation is performed with interrupts
> disabled. However, other architectures which specify
> CONFIG_MMU_GATHER_RCU_TABLE_FREE use an RCU lock for this operation.
>
> In these instances, we acquire an RCU lock while performing our checks. If
> we cannot get a stable mapping, we fall back to the slow path, as otherwise
> we'd have to walk the page tables again and it's simpler and more effective
> to just fall back.
>
> It's important to note that there are no APIs allowing users to specify
> FOLL_FAST_ONLY for a PUP-fast let alone with FOLL_LONGTERM, so we can
> always rely on the fact that if we fail to pin on the fast path, the code
> will fall back to the slow path which can perform the more thorough check.
>
> Suggested-by: David Hildenbrand <david@xxxxxxxxxx>
> Suggested-by: Kirill A . Shutemov <kirill@xxxxxxxxxxxxx>
> Signed-off-by: Lorenzo Stoakes <lstoakes@xxxxxxxxx>
> ---
> mm/gup.c | 87 ++++++++++++++++++++++++++++++++++++++++++++++++++++++--
> 1 file changed, 85 insertions(+), 2 deletions(-)
>
> diff --git a/mm/gup.c b/mm/gup.c
> index 0f09dec0906c..431618048a03 100644
> --- a/mm/gup.c
> +++ b/mm/gup.c
> @@ -18,6 +18,7 @@
> #include <linux/migrate.h>
> #include <linux/mm_inline.h>
> #include <linux/sched/mm.h>
> +#include <linux/shmem_fs.h>
>
> #include <asm/mmu_context.h>
> #include <asm/tlbflush.h>
> @@ -95,6 +96,77 @@ static inline struct folio *try_get_folio(struct page *page, int refs)
> return folio;
> }
>
> +#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
> +static bool stabilise_mapping_rcu(struct folio *folio)
> +{
> + struct address_space *mapping = READ_ONCE(folio->mapping);
> +
> + rcu_read_lock();
> +
> + return mapping == READ_ONCE(folio->mapping);
> +}
> +
> +static void unlock_rcu(void)
> +{
> + rcu_read_unlock();
> +}
> +#else
> +static bool stabilise_mapping_rcu(struct folio *)
> +{
> + return true;
> +}
> +
> +static void unlock_rcu(void)
> +{
> +}
> +#endif

So I wonder is this complexity worth it over just using rcu_read_lock()
unconditionally? It is just a compilation barrier AFAIK...

Also stabilise_mapping_rcu() seems to be a bit of a misnomer since the
mapping is not stable after the function is called. Also the return value
seems a bit pointless to me since we have to check folio_mapping() for
being != NULL anyway. All in all I'd say that:

struct address_space *mapping;

/* Make sure mapping cannot be freed under our hands */
rcu_read_lock();
mapping = folio_mapping(folio);
ret = folio_test_anon(folio) || (mapping && shmem_mapping(mapping));
rcu_read_unlock();

looks more comprehensible...

Honza

> +
> +/*
> + * Used in the GUP-fast path to determine whether a FOLL_PIN | FOLL_LONGTERM |
> + * FOLL_WRITE pin is permitted for a specific folio.
> + *
> + * This assumes the folio is stable and pinned.
> + *
> + * Writing to pinned file-backed dirty tracked folios is inherently problematic
> + * (see comment describing the writeable_file_mapping_allowed() function). We
> + * therefore try to avoid the most egregious case of a long-term mapping doing
> + * so.
> + *
> + * This function cannot be as thorough as that one as the VMA is not available
> + * in the fast path, so instead we whitelist known good cases.
> + *
> + * The folio is stable, but the mapping might not be. When truncating for
> + * instance, a zap is performed which triggers TLB shootdown. IRQs are disabled
> + * so we are safe from an IPI, but some architectures use an RCU lock for this
> + * operation, so we acquire an RCU lock to ensure the mapping is stable.
> + */
> +static bool folio_longterm_write_pin_allowed(struct folio *folio)
> +{
> + bool ret;
> +
> + /* hugetlb mappings do not require dirty tracking. */
> + if (folio_test_hugetlb(folio))
> + return true;
> +
> + if (stabilise_mapping_rcu(folio)) {
> + struct address_space *mapping = folio_mapping(folio);
> +
> + /*
> + * Neither anonymous nor shmem-backed folios require
> + * dirty tracking.
> + */
> + ret = folio_test_anon(folio) ||
> + (mapping && shmem_mapping(mapping));
> + } else {
> + /* If the mapping is unstable, fallback to the slow path. */
> + ret = false;
> + }
> +
> + unlock_rcu();
> +
> + return ret;
> +}
> +
> /**
> * try_grab_folio() - Attempt to get or pin a folio.
> * @page: pointer to page to be grabbed
> @@ -123,6 +195,8 @@ static inline struct folio *try_get_folio(struct page *page, int refs)
> */
> struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
> {
> + bool is_longterm = flags & FOLL_LONGTERM;
> +
> if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
> return NULL;
>
> @@ -136,8 +210,7 @@ struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
> * right zone, so fail and let the caller fall back to the slow
> * path.
> */
> - if (unlikely((flags & FOLL_LONGTERM) &&
> - !is_longterm_pinnable_page(page)))
> + if (unlikely(is_longterm && !is_longterm_pinnable_page(page)))
> return NULL;
>
> /*
> @@ -148,6 +221,16 @@ struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
> if (!folio)
> return NULL;
>
> + /*
> + * Can this folio be safely pinned? We need to perform this
> + * check after the folio is stabilised.
> + */
> + if ((flags & FOLL_WRITE) && is_longterm &&
> + !folio_longterm_write_pin_allowed(folio)) {
> + folio_put_refs(folio, refs);
> + return NULL;
> + }
> +
> /*
> * When pinning a large folio, use an exact count to track it.
> *
> --
> 2.40.1
>
--
Jan Kara <jack@xxxxxxxx>
SUSE Labs, CR