Re: [PATCH v3 2/2] sched/fair: Choose the CPU where short task is running during wake up

From: Tianchen Ding
Date: Sun Dec 04 2022 - 21:36:38 EST


Hi Chen.

On 2022/12/1 16:44, Chen Yu wrote:
[Problem Statement]
For a workload that is doing frequent context switches, the throughput
scales well until the number of instances reaches a peak point. After
that peak point, the throughput drops significantly if the number of
instances continues to increase.

The will-it-scale context_switch1 test case exposes the issue. The
test platform has 112 CPUs per LLC domain. The will-it-scale launches
1, 8, 16 ... 112 instances respectively. Each instance is composed
of 2 tasks, and each pair of tasks would do ping-pong scheduling via
pipe_read() and pipe_write(). No task is bound to any CPU.
It is found that, once the number of instances is higher than
56(112 tasks in total, every CPU has 1 task), the throughput
drops accordingly if the instance number continues to increase:

^
throughput|
| X
| X X X
| X X X
| X X
| X X
| X
| X
| X
| X
|
+-----------------.------------------->
56
number of instances

[Symptom analysis]

The performance downgrading was caused by a high system idle
percentage(around 20% ~ 30%). The CPUs waste a lot of time in
idle and do nothing. As a comparison, if set CPU affinity to
these workloads and stops them from migrating among CPUs,
the idle percentage drops to nearly 0%, and the throughput
increases by about 300%. This indicates room for optimization.

The reason for the high idle percentage is different before/after
commit f3dd3f674555 ("sched: Remove the limitation of WF_ON_CPU
on wakelist if wakee cpu is idle").

[Before the commit]
The bottleneck is the runqueue spinlock.

nr_instance rq lock percentage
1 1.22%
8 1.17%
16 1.20%
24 1.22%
32 1.46%
40 1.61%
48 1.63%
56 1.65%
--------------------------
64 3.77% |
72 5.90% | increase
80 7.95% |
88 9.98% v
96 11.81%
104 13.54%
112 15.13%

And top 2 rq lock hot paths:

(path1):
raw_spin_rq_lock_nested.constprop.0;
try_to_wake_up;
default_wake_function;
autoremove_wake_function;
__wake_up_common;
__wake_up_common_lock;
__wake_up_sync_key;
pipe_write;
new_sync_write;
vfs_write;
ksys_write;
__x64_sys_write;
do_syscall_64;
entry_SYSCALL_64_after_hwframe;write

(path2):
raw_spin_rq_lock_nested.constprop.0;
__sched_text_start;
schedule_idle;
do_idle;
cpu_startup_entry;
start_secondary;
secondary_startup_64_no_verify

task A tries to wake up task B on CPU1, then task A grabs the
runqueue lock of CPU1. If CPU1 is about to quit idle, it needs
to grab its lock which has been taken by someone else. Then
CPU1 takes more time to quit which hurts the performance.

[After the commit]
The cause is the race condition between select_task_rq() and
the task enqueue.

Suppose there are nr_cpus pairs of ping-pong scheduling
tasks. For example, p0' and p0 are ping-pong scheduling,
so do p1' <=> p1, and p2'<=> p2. None of these tasks are
bound to any CPUs. The problem can be summarized as:
more than 1 wakers are stacked on 1 CPU, which slows down
waking up their wakees:

CPU0 CPU1 CPU2

p0' p1' => idle p2'

try_to_wake_up(p0) try_to_wake_up(p2);
CPU1 = select_task_rq(p0); CPU1 = select_task_rq(p2);
ttwu_queue(p0, CPU1); ttwu_queue(p2, CPU1);
__ttwu_queue_wakelist(p0, CPU1); => ttwu_list->p0
quiting cpuidle_idle_call()

ttwu_list->p2->p0 <= __ttwu_queue_wakelist(p2, CPU1);

WRITE_ONCE(CPU1->ttwu_pending, 1); WRITE_ONCE(CPU1->ttwu_pending, 1);

p0' => idle
sched_ttwu_pending()
enqueue_task(p2 and p0)

idle => p2

...
p2 time slice expires
...
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
<=== !!! p2 delays the wake up of p0' !!!
!!! causes long idle on CPU0 !!!
p2 => p0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
p0 wakes up p0'

idle => p0'



Since there are many waker/wakee pairs in the system, the chain reaction
causes many CPUs to be victims. These idle CPUs wait for their waker to
be scheduled.

Actually Tiancheng has mentioned above issue here[2].


First I want to say that this issue (race condition between selecting idle cpu and enqueuing task) always exists before or after the commit f3dd3f674555. And I know this is a big issue so in [2] I only try to fix a small part of it. Of course I'm glad to see you trying solving this issue too :-)

There may be a bit wrong in your comment about the order. "WRITE_ONCE(CPU1->ttwu_pending, 1);" on CPU0 is earlier than CPU1 getting "ttwu_list->p0", right?

Thanks.