Re: [PATCH v7 2/7] sched/fair: Decay task PELT values during wakeup migration

From: Vincent Guittot
Date: Fri Apr 29 2022 - 04:20:11 EST


Le vendredi 29 avril 2022 à 01:22:19 (+0800), Tao Zhou a écrit :
> Hi Vincent,
>
> On Thu, Apr 28, 2022 at 03:38:39PM +0200, Vincent Guittot wrote:
>
> > On Wed, 27 Apr 2022 at 19:37, Tao Zhou <tao.zhou@xxxxxxxxx> wrote:
> > >

[..]

> > > > + /* sync clock_pelt_idle with last update */
> > > > + if (cfs_rq->nr_running == 0)
> > > > + update_idle_cfs_rq_clock_pelt(cfs_rq);
> > >
> > > I think that if cfs_rq->nr_running == 0 then use cfs rq pelt_idle to update
> > > idle cfs rq.
> >
> > update_blocked_averages() updates all cfs rq to be aligned with now so
> > we don't need to calculate an estimated now. update_rq_clock(rq) is
> > called 1st to update the rq->clock and childs
> >
> > With only need to save when happened the last update which is done in
> > update_rq_clock_pelt(rq) for rq->clock_pelt and with
> > update_idle_cfs_rq_clock_pelt(cfs) for the cfs_rq_clock_pelt
>
> I missed this.

I ended up with something a bit different:

---
kernel/sched/fair.c | 133 ++++++++++++++++++++++++++++++++++---------
kernel/sched/pelt.h | 66 ++++++++++++++++++---
kernel/sched/sched.h | 10 ++++
3 files changed, 174 insertions(+), 35 deletions(-)

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index abd1feeec0c2..63e4cf225292 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -3335,27 +3335,12 @@ static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
if (cfs_rq->load.weight)
return false;

- if (cfs_rq->avg.load_sum)
- return false;
-
- if (cfs_rq->avg.util_sum)
- return false;
-
- if (cfs_rq->avg.runnable_sum)
+ if (load_avg_is_decayed(&cfs_rq->avg))
return false;

if (child_cfs_rq_on_list(cfs_rq))
return false;

- /*
- * _avg must be null when _sum are null because _avg = _sum / divider
- * Make sure that rounding and/or propagation of PELT values never
- * break this.
- */
- SCHED_WARN_ON(cfs_rq->avg.load_avg ||
- cfs_rq->avg.util_avg ||
- cfs_rq->avg.runnable_avg);
-
return true;
}

@@ -3694,6 +3679,88 @@ static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum

#endif /* CONFIG_FAIR_GROUP_SCHED */

+#ifdef CONFIG_NO_HZ_COMMON
+static inline void migrate_se_pelt_lag(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq;
+ struct rq *rq;
+ bool is_idle;
+ u64 now, throttled = 0;
+
+ /* utilization is already fully decayed */
+ if (load_avg_is_decayed(&se->avg))
+ return;
+
+ cfs_rq = cfs_rq_of(se);
+ rq = rq_of(cfs_rq);
+
+ rcu_read_lock();
+ is_idle = is_idle_task(rcu_dereference(rq->curr));
+ rcu_read_unlock();
+
+ /*
+ * The lag estimation comes with a cost we don't want to pay all the
+ * time. Hence, limiting to the case where the source CPU is idle and
+ * we know we are at the greatest risk to have an outdated clock.
+ */
+ if (!is_idle)
+ return;
+
+ /*
+ * Estimated "now" is:
+ * last_update_time: last update of the cfs_lock_pelt +
+ * cfs_idle_lag: rq_clock_pelt delta bewteen last cfs update and last rq update +
+ * rq_idle_lag: rq_clock delta between last rq update and now
+ *
+ * with
+ *
+ * last_update_time == cfs_clock_pelt()
+ * == rq_clock_pelt() - cfs->throttled_clock_pelt_time
+ *
+ * cfs_idle_lag: rq_clock_pelt() when rq is idle - rq_clock_pelt() when cfs is idle
+ *
+ * rq_idle_lag : sched_clock_cpu() - rq_clock() when rq is idle
+ *
+ * In fact, rq_clock_pelt() that is used for last_update_time and when
+ * cfs is idle are the same because their last update happens atthe
+ * same time.
+ *
+ * We can optimize "now" to be:
+ * rq_clock_pelt when rq is idle - cfs->throttled_clock_pelt_time when cfs is idle +
+ * sched_clock_cpu() - rq_clock() when rq is idle
+ *
+ * when rq is idle
+ * rq_clock_pelt() is saved in rq->clock_pelt_idle
+ * rq_clock() is saved in rq->enter idle
+ *
+ * when cfs is idle
+ * cfs->throttled_clock_pelt_time is saved in cfs_rq->throttled_pelt_idle
+ *
+ * When !CFS_BANDWIDTH, cfs->throttled_clock_pelt_time is null
+ */
+
+#ifdef CONFIG_CFS_BANDWIDTH
+ throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
+ /* The clock has been stopped for throttling */
+ if (throttled == U64_MAX)
+ return;
+#endif
+
+ now = u64_u32_load(rq->clock_pelt_idle);
+ now -= throttled;
+
+ /* An update happened while computing lag */
+ if (now < cfs_rq_last_update_time(cfs_rq))
+ return;
+
+ now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->enter_idle);
+
+ __update_load_avg_blocked_se(now, se);
+}
+#else
+static void migrate_se_pelt_lag(struct sched_entity *se) {}
+#endif
+
/**
* update_cfs_rq_load_avg - update the cfs_rq's load/util averages
* @now: current time, as per cfs_rq_clock_pelt()
@@ -4429,6 +4496,9 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
*/
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
update_min_vruntime(cfs_rq);
+
+ if (cfs_rq->nr_running == 0)
+ update_idle_cfs_rq_clock_pelt(cfs_rq);
}

/*
@@ -6946,6 +7016,8 @@ static void detach_entity_cfs_rq(struct sched_entity *se);
*/
static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
{
+ struct sched_entity *se = &p->se;
+
/*
* As blocked tasks retain absolute vruntime the migration needs to
* deal with this by subtracting the old and adding the new
@@ -6953,7 +7025,6 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
* the task on the new runqueue.
*/
if (READ_ONCE(p->__state) == TASK_WAKING) {
- struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);

se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
@@ -6965,25 +7036,29 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
* rq->lock and can modify state directly.
*/
lockdep_assert_rq_held(task_rq(p));
- detach_entity_cfs_rq(&p->se);
+ detach_entity_cfs_rq(se);

} else {
+ remove_entity_load_avg(se);
+
/*
- * We are supposed to update the task to "current" time, then
- * its up to date and ready to go to new CPU/cfs_rq. But we
- * have difficulty in getting what current time is, so simply
- * throw away the out-of-date time. This will result in the
- * wakee task is less decayed, but giving the wakee more load
- * sounds not bad.
+ * Here, the task's PELT values have been updated according to
+ * the current rq's clock. But if that clock hasn't been
+ * updated in a while, a substantial idle time will be missed,
+ * leading to an inflation after wake-up on the new rq.
+ *
+ * Estimate the missing time from the cfs_rq last_update_time
+ * and update sched_avg to improve the PELT continuity after
+ * migration.
*/
- remove_entity_load_avg(&p->se);
+ migrate_se_pelt_lag(se);
}

/* Tell new CPU we are migrated */
- p->se.avg.last_update_time = 0;
+ se->avg.last_update_time = 0;

/* We have migrated, no longer consider this task hot */
- p->se.exec_start = 0;
+ se->exec_start = 0;

update_scan_period(p, new_cpu);
}
@@ -8149,6 +8224,10 @@ static bool __update_blocked_fair(struct rq *rq, bool *done)
if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
update_tg_load_avg(cfs_rq);

+ /* sync clock_pelt_idle with last update */
+ if (cfs_rq->nr_running == 0)
+ update_idle_cfs_rq_clock_pelt(cfs_rq);
+
if (cfs_rq == &rq->cfs)
decayed = true;
}
diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h
index 4ff2ed4f8fa1..4143c6dc64dc 100644
--- a/kernel/sched/pelt.h
+++ b/kernel/sched/pelt.h
@@ -37,6 +37,29 @@ update_irq_load_avg(struct rq *rq, u64 running)
}
#endif

+static inline bool load_avg_is_decayed(struct sched_avg *sa)
+{
+ if (sa->load_sum)
+ return false;
+
+ if (sa->util_sum)
+ return false;
+
+ if (sa->runnable_sum)
+ return false;
+
+ /*
+ * _avg must be null when _sum are null because _avg = _sum / divider
+ * Make sure that rounding and/or propagation of PELT values never
+ * break this.
+ */
+ SCHED_WARN_ON(sa->load_avg ||
+ sa->util_avg ||
+ sa->runnable_avg);
+
+ return true;
+}
+
#define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024)

static inline u32 get_pelt_divider(struct sched_avg *avg)
@@ -61,6 +84,23 @@ static inline void cfs_se_util_change(struct sched_avg *avg)
WRITE_ONCE(avg->util_est.enqueued, enqueued);
}

+static inline u64 rq_clock_pelt(struct rq *rq)
+{
+ lockdep_assert_rq_held(rq);
+ assert_clock_updated(rq);
+
+ return rq->clock_pelt - rq->lost_idle_time;
+}
+
+/* The rq is idle, we can sync to clock_task */
+static inline void _update_idle_rq_clock_pelt(struct rq *rq)
+{
+ rq->clock_pelt = rq_clock_task(rq);
+
+ u64_u32_store(rq->enter_idle, rq_clock(rq));
+ u64_u32_store(rq->clock_pelt_idle, rq_clock_pelt(rq));
+}
+
/*
* The clock_pelt scales the time to reflect the effective amount of
* computation done during the running delta time but then sync back to
@@ -76,8 +116,7 @@ static inline void cfs_se_util_change(struct sched_avg *avg)
static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
{
if (unlikely(is_idle_task(rq->curr))) {
- /* The rq is idle, we can sync to clock_task */
- rq->clock_pelt = rq_clock_task(rq);
+ _update_idle_rq_clock_pelt(rq);
return;
}

@@ -130,17 +169,26 @@ static inline void update_idle_rq_clock_pelt(struct rq *rq)
*/
if (util_sum >= divider)
rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
+
+ _update_idle_rq_clock_pelt(rq);
}

-static inline u64 rq_clock_pelt(struct rq *rq)
+#ifdef CONFIG_CFS_BANDWIDTH
+static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
{
- lockdep_assert_rq_held(rq);
- assert_clock_updated(rq);
-
- return rq->clock_pelt - rq->lost_idle_time;
+ /*
+ * Make sure that pending update of rq->clock_pelt_idle and
+ * rq->enter_idle are visible during update_blocked_average() before
+ * updating cfs_rq->throttled_pelt_idle.
+ */
+ smp_wmb();
+ if (unlikely(cfs_rq->throttle_count))
+ u64_u32_store(cfs_rq->throttled_pelt_idle, U64_MAX);
+ else
+ u64_u32_store(cfs_rq->throttled_pelt_idle,
+ cfs_rq->throttled_clock_pelt_time);
}

-#ifdef CONFIG_CFS_BANDWIDTH
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
{
@@ -150,6 +198,7 @@ static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
}
#else
+static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
{
return rq_clock_pelt(rq_of(cfs_rq));
@@ -204,6 +253,7 @@ update_rq_clock_pelt(struct rq *rq, s64 delta) { }
static inline void
update_idle_rq_clock_pelt(struct rq *rq) { }

+static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
#endif


diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index e2cf6e48b165..ea9365e1a24e 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -641,6 +641,10 @@ struct cfs_rq {
int runtime_enabled;
s64 runtime_remaining;

+ u64 throttled_pelt_idle;
+#ifndef CONFIG_64BIT
+ u64 throttled_pelt_idle_copy;
+#endif
u64 throttled_clock;
u64 throttled_clock_pelt;
u64 throttled_clock_pelt_time;
@@ -1013,6 +1017,12 @@ struct rq {
u64 clock_task ____cacheline_aligned;
u64 clock_pelt;
unsigned long lost_idle_time;
+ u64 clock_pelt_idle;
+ u64 enter_idle;
+#ifndef CONFIG_64BIT
+ u64 clock_pelt_idle_copy;
+ u64 enter_idle_copy;
+#endif

atomic_t nr_iowait;

--
2.17.1