[PATCH 02/15] Introduce Cadence USBSSP DRD driver - added gadget-mem.c

From: Pawel Laszczak
Date: Tue Jul 03 2018 - 15:58:26 EST


Signed-off-by: Laszczak Pawel <pawell@xxxxxxxxxxx>
---
drivers/usb/usbssp/gadget-mem.c | 2275 +++++++++++++++++++++++++++++++
1 file changed, 2275 insertions(+)
create mode 100644 drivers/usb/usbssp/gadget-mem.c

diff --git a/drivers/usb/usbssp/gadget-mem.c b/drivers/usb/usbssp/gadget-mem.c
new file mode 100644
index 000000000000..309d5ec7555b
--- /dev/null
+++ b/drivers/usb/usbssp/gadget-mem.c
@@ -0,0 +1,2275 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * USBSSP device controller driver
+ *
+ * Copyright (C) 2018 Cadence.
+ *
+ * Author: Pawel Laszczak
+ * Some code borrowed from the Linux XHCI driver.
+ */
+
+#include <linux/usb.h>
+#include <linux/pci.h>
+#include <linux/slab.h>
+#include <linux/dmapool.h>
+#include <linux/dma-mapping.h>
+#include "gadget.h"
+#include "gadget-trace.h"
+#include "gadget-debugfs.h"
+
+/*
+ * Allocates a generic ring segment from the ring pool, sets the dma address,
+ * initializes the segment to zero, and sets the private next pointer to NULL.
+ *
+ * "All components of all Command and Transfer TRBs shall be initialized to '0'"
+ */
+static struct usbssp_segment *usbssp_segment_alloc(
+ struct usbssp_udc *usbssp_data, unsigned int cycle_state,
+ unsigned int max_packet, gfp_t flags)
+{
+ struct usbssp_segment *seg;
+ dma_addr_t dma;
+ int i;
+
+ seg = kzalloc(sizeof(*seg), flags);
+ if (!seg)
+ return NULL;
+
+ seg->trbs = dma_pool_zalloc(usbssp_data->segment_pool, flags, &dma);
+ if (!seg->trbs) {
+ kfree(seg);
+ return NULL;
+ }
+
+ if (max_packet) {
+ seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
+ if (!seg->bounce_buf) {
+ dma_pool_free(usbssp_data->segment_pool,
+ seg->trbs, dma);
+ kfree(seg);
+ return NULL;
+ }
+ }
+
+ /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
+ if (cycle_state == 0) {
+ for (i = 0; i < TRBS_PER_SEGMENT; i++)
+ seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
+ }
+ seg->dma = dma;
+ seg->next = NULL;
+
+ return seg;
+}
+
+static void usbssp_segment_free(struct usbssp_udc *usbssp_data,
+ struct usbssp_segment *seg)
+{
+ if (seg->trbs) {
+ dma_pool_free(usbssp_data->segment_pool, seg->trbs, seg->dma);
+ seg->trbs = NULL;
+ }
+ kfree(seg->bounce_buf);
+ kfree(seg);
+}
+
+static void usbssp_free_segments_for_ring(struct usbssp_udc *usbssp_data,
+ struct usbssp_segment *first)
+{
+ struct usbssp_segment *seg;
+
+ seg = first->next;
+ while (seg != first) {
+ struct usbssp_segment *next = seg->next;
+
+ usbssp_segment_free(usbssp_data, seg);
+ seg = next;
+ }
+ usbssp_segment_free(usbssp_data, first);
+}
+
+/*
+ * Make the prev segment point to the next segment.
+ *
+ * Change the last TRB in the prev segment to be a Link TRB which points to the
+ * DMA address of the next segment. The caller needs to set any Link TRB
+ * related flags, such as End TRB, Toggle Cycle, and no snoop.
+ */
+static void usbssp_link_segments(struct usbssp_udc *usbssp_data,
+ struct usbssp_segment *prev,
+ struct usbssp_segment *next,
+ enum usbssp_ring_type type)
+{
+ u32 val;
+
+ if (!prev || !next)
+ return;
+ prev->next = next;
+ if (type != TYPE_EVENT) {
+ prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
+ cpu_to_le64(next->dma);
+
+ /* Set the last TRB in the segment to have a TRB type ID
+ * of Link TRB
+ */
+ val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
+ val &= ~TRB_TYPE_BITMASK;
+ val |= TRB_TYPE(TRB_LINK);
+ prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
+ }
+}
+
+/*
+ * Link the ring to the new segments.
+ * Set Toggle Cycle for the new ring if needed.
+ */
+static void usbssp_link_rings(struct usbssp_udc *usbssp_data,
+ struct usbssp_ring *ring,
+ struct usbssp_segment *first,
+ struct usbssp_segment *last,
+ unsigned int num_segs)
+{
+ struct usbssp_segment *next;
+
+ if (!ring || !first || !last)
+ return;
+
+ next = ring->enq_seg->next;
+ usbssp_link_segments(usbssp_data, ring->enq_seg, first, ring->type);
+ usbssp_link_segments(usbssp_data, last, next, ring->type);
+ ring->num_segs += num_segs;
+ ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
+
+ if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
+ ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
+ &= ~cpu_to_le32(LINK_TOGGLE);
+ last->trbs[TRBS_PER_SEGMENT-1].link.control
+ |= cpu_to_le32(LINK_TOGGLE);
+ ring->last_seg = last;
+ }
+}
+
+/*
+ * We need a radix tree for mapping physical addresses of TRBs to which stream
+ * ID they belong to. We need to do this because the device controller won't
+ * tell us which stream ring the TRB came from. We could store the stream ID
+ * in an event data TRB, but that doesn't help us for the cancellation case,
+ * since the endpoint may stop before it reaches that event data TRB.
+ *
+ * The radix tree maps the upper portion of the TRB DMA address to a ring
+ * segment that has the same upper portion of DMA addresses. For example,
+ * say I have segments of size 1KB, that are always 1KB aligned. A segment may
+ * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
+ * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
+ * pass the radix tree a key to get the right stream ID:
+ *
+ * 0x10c90fff >> 10 = 0x43243
+ * 0x10c912c0 >> 10 = 0x43244
+ * 0x10c91400 >> 10 = 0x43245
+ *
+ * Obviously, only those TRBs with DMA addresses that are within the segment
+ * will make the radix tree return the stream ID for that ring.
+ *
+ * Caveats for the radix tree:
+ *
+ * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
+ * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
+ * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
+ * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
+ * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
+ * extended systems (where the DMA address can be bigger than 32-bits),
+ * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
+ */
+static int usbssp_insert_segment_mapping(
+ struct radix_tree_root *trb_address_map,
+ struct usbssp_ring *ring,
+ struct usbssp_segment *seg,
+ gfp_t mem_flags)
+{
+ unsigned long key;
+ int ret;
+
+ key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
+ /* Skip any segments that were already added. */
+ if (radix_tree_lookup(trb_address_map, key))
+ return 0;
+
+ ret = radix_tree_maybe_preload(mem_flags);
+ if (ret)
+ return ret;
+ ret = radix_tree_insert(trb_address_map, key, ring);
+ radix_tree_preload_end();
+ return ret;
+}
+
+static void usbssp_remove_segment_mapping(
+ struct radix_tree_root *trb_address_map,
+ struct usbssp_segment *seg)
+{
+ unsigned long key;
+
+ key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
+ if (radix_tree_lookup(trb_address_map, key))
+ radix_tree_delete(trb_address_map, key);
+}
+
+static int usbssp_update_stream_segment_mapping(
+ struct radix_tree_root *trb_address_map,
+ struct usbssp_ring *ring,
+ struct usbssp_segment *first_seg,
+ struct usbssp_segment *last_seg,
+ gfp_t mem_flags)
+{
+ struct usbssp_segment *seg;
+ struct usbssp_segment *failed_seg;
+ int ret;
+
+ if (WARN_ON_ONCE(trb_address_map == NULL))
+ return 0;
+
+ seg = first_seg;
+ do {
+ ret = usbssp_insert_segment_mapping(trb_address_map,
+ ring, seg, mem_flags);
+ if (ret)
+ goto remove_streams;
+ if (seg == last_seg)
+ return 0;
+ seg = seg->next;
+ } while (seg != first_seg);
+
+ return 0;
+
+remove_streams:
+ failed_seg = seg;
+ seg = first_seg;
+ do {
+ usbssp_remove_segment_mapping(trb_address_map, seg);
+ if (seg == failed_seg)
+ return ret;
+ seg = seg->next;
+ } while (seg != first_seg);
+
+ return ret;
+}
+
+static void usbssp_remove_stream_mapping(struct usbssp_ring *ring)
+{
+ struct usbssp_segment *seg;
+
+ if (WARN_ON_ONCE(ring->trb_address_map == NULL))
+ return;
+
+ seg = ring->first_seg;
+ do {
+ usbssp_remove_segment_mapping(ring->trb_address_map, seg);
+ seg = seg->next;
+ } while (seg != ring->first_seg);
+}
+
+static int usbssp_update_stream_mapping(struct usbssp_ring *ring,
+ gfp_t mem_flags)
+{
+ return usbssp_update_stream_segment_mapping(ring->trb_address_map, ring,
+ ring->first_seg, ring->last_seg, mem_flags);
+}
+
+void usbssp_ring_free(struct usbssp_udc *usbssp_data, struct usbssp_ring *ring)
+{
+ if (!ring)
+ return;
+
+ trace_usbssp_ring_free(ring);
+
+ if (ring->first_seg) {
+ if (ring->type == TYPE_STREAM)
+ usbssp_remove_stream_mapping(ring);
+ usbssp_free_segments_for_ring(usbssp_data, ring->first_seg);
+ }
+
+ kfree(ring);
+}
+
+static void usbssp_initialize_ring_info(struct usbssp_ring *ring,
+ unsigned int cycle_state)
+{
+ /* The ring is empty, so the enqueue pointer == dequeue pointer */
+ ring->enqueue = ring->first_seg->trbs;
+ ring->enq_seg = ring->first_seg;
+ ring->dequeue = ring->enqueue;
+ ring->deq_seg = ring->first_seg;
+ /* The ring is initialized to 0. The producer must write 1 to the cycle
+ * bit to handover ownership of the TRB, so PCS = 1. The consumer must
+ * compare CCS to the cycle bit to check ownership, so CCS = 1.
+ *
+ * New rings are initialized with cycle state equal to 1; if we are
+ * handling ring expansion, set the cycle state equal to the old ring.
+ */
+ ring->cycle_state = cycle_state;
+
+ /*
+ * Each segment has a link TRB, and leave an extra TRB for SW
+ * accounting purpose
+ */
+ ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
+}
+
+/* Allocate segments and link them for a ring */
+static int usbssp_alloc_segments_for_ring(struct usbssp_udc *usbssp_data,
+ struct usbssp_segment **first,
+ struct usbssp_segment **last,
+ unsigned int num_segs,
+ unsigned int cycle_state,
+ enum usbssp_ring_type type,
+ unsigned int max_packet,
+ gfp_t flags)
+{
+ struct usbssp_segment *prev;
+
+ /*allocation first segment */
+ prev = usbssp_segment_alloc(usbssp_data, cycle_state,
+ max_packet, flags);
+ if (!prev)
+ return -ENOMEM;
+ num_segs--;
+
+ *first = prev;
+ /*allocation all other segments*/
+ while (num_segs > 0) {
+ struct usbssp_segment *next;
+
+ next = usbssp_segment_alloc(usbssp_data, cycle_state,
+ max_packet, flags);
+ if (!next) {
+ prev = *first;
+ /*Free all reserved segment*/
+ while (prev) {
+ next = prev->next;
+ usbssp_segment_free(usbssp_data, prev);
+ prev = next;
+ }
+ return -ENOMEM;
+ }
+ usbssp_link_segments(usbssp_data, prev, next, type);
+
+ prev = next;
+ num_segs--;
+ }
+ usbssp_link_segments(usbssp_data, prev, *first, type);
+ *last = prev;
+
+ return 0;
+}
+
+/**
+ * Create a new ring with zero or more segments.
+ *
+ * Link each segment together into a ring.
+ * Set the end flag and the cycle toggle bit on the last segment.
+ * See section 4.9.1 and figures 15 and 16.
+ */
+static struct usbssp_ring *usbssp_ring_alloc(struct usbssp_udc *usbssp_data,
+ unsigned int num_segs,
+ unsigned int cycle_state,
+ enum usbssp_ring_type type,
+ unsigned int max_packet,
+ gfp_t flags)
+{
+ struct usbssp_ring *ring;
+ int ret;
+
+ ring = kzalloc(sizeof *(ring), flags);
+ if (!ring)
+ return NULL;
+
+ ring->num_segs = num_segs;
+ ring->bounce_buf_len = max_packet;
+ INIT_LIST_HEAD(&ring->td_list);
+ ring->type = type;
+ if (num_segs == 0)
+ return ring;
+
+ ret = usbssp_alloc_segments_for_ring(usbssp_data, &ring->first_seg,
+ &ring->last_seg, num_segs, cycle_state, type,
+ max_packet, flags);
+ if (ret)
+ goto fail;
+
+ /* Only event ring does not use link TRB */
+ if (type != TYPE_EVENT) {
+ /* See section 4.9.2.1 and 6.4.4.1 */
+ ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
+ cpu_to_le32(LINK_TOGGLE);
+ }
+ usbssp_initialize_ring_info(ring, cycle_state);
+ trace_usbssp_ring_alloc(ring);
+ return ring;
+fail:
+ kfree(ring);
+ return NULL;
+}
+
+void usbssp_free_endpoint_ring(struct usbssp_udc *usbssp_data,
+ struct usbssp_device *dev_priv,
+ unsigned int ep_index)
+{
+ usbssp_ring_free(usbssp_data, dev_priv->eps[ep_index].ring);
+ dev_priv->eps[ep_index].ring = NULL;
+}
+
+/*
+ * Expand an existing ring.
+ * Allocate a new ring which has same segment numbers and link the two rings.
+ */
+int usbssp_ring_expansion(struct usbssp_udc *usbssp_data,
+ struct usbssp_ring *ring,
+ unsigned int num_trbs, gfp_t flags)
+{
+ struct usbssp_segment *first;
+ struct usbssp_segment *last;
+ unsigned int num_segs;
+ unsigned int num_segs_needed;
+ int ret;
+
+ num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
+ (TRBS_PER_SEGMENT - 1);
+
+ /* Allocate number of segments we needed, or double the ring size */
+ num_segs = ring->num_segs > num_segs_needed ?
+ ring->num_segs : num_segs_needed;
+
+ ret = usbssp_alloc_segments_for_ring(usbssp_data, &first, &last,
+ num_segs, ring->cycle_state, ring->type,
+ ring->bounce_buf_len, flags);
+ if (ret)
+ return -ENOMEM;
+
+ if (ring->type == TYPE_STREAM)
+ ret = usbssp_update_stream_segment_mapping(
+ ring->trb_address_map, ring, first,
+ last, flags);
+ if (ret) {
+ struct usbssp_segment *next;
+
+ do {
+ next = first->next;
+ usbssp_segment_free(usbssp_data, first);
+ if (first == last)
+ break;
+ first = next;
+ } while (true);
+ return ret;
+ }
+
+ usbssp_link_rings(usbssp_data, ring, first, last, num_segs);
+ trace_usbssp_ring_expansion(ring);
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_ring_expansion,
+ "ring expansion succeed, now has %d segments",
+ ring->num_segs);
+
+ return 0;
+}
+
+struct usbssp_container_ctx *usbssp_alloc_container_ctx(
+ struct usbssp_udc *usbssp_data,
+ int type, gfp_t flags)
+{
+ struct usbssp_container_ctx *ctx;
+
+ if ((type != USBSSP_CTX_TYPE_DEVICE) && (type != USBSSP_CTX_TYPE_INPUT))
+ return NULL;
+
+ ctx = kzalloc(sizeof(*ctx), flags);
+ if (!ctx)
+ return NULL;
+
+ ctx->type = type;
+ ctx->size = HCC_64BYTE_CONTEXT(usbssp_data->hcc_params) ? 2048 : 1024;
+ if (type == USBSSP_CTX_TYPE_INPUT)
+ ctx->size += CTX_SIZE(usbssp_data->hcc_params);
+
+ ctx->bytes = dma_pool_zalloc(usbssp_data->device_pool,
+ flags, &ctx->dma);
+
+ if (!ctx->bytes) {
+ kfree(ctx);
+ return NULL;
+ }
+ return ctx;
+}
+
+void usbssp_free_container_ctx(struct usbssp_udc *usbssp_data,
+ struct usbssp_container_ctx *ctx)
+{
+ if (!ctx)
+ return;
+ dma_pool_free(usbssp_data->device_pool, ctx->bytes, ctx->dma);
+ kfree(ctx);
+}
+
+struct usbssp_input_control_ctx *usbssp_get_input_control_ctx(
+ struct usbssp_container_ctx *ctx)
+{
+ if (ctx->type != USBSSP_CTX_TYPE_INPUT)
+ return NULL;
+
+ return (struct usbssp_input_control_ctx *)ctx->bytes;
+}
+
+struct usbssp_slot_ctx *usbssp_get_slot_ctx(struct usbssp_udc *usbssp_data,
+ struct usbssp_container_ctx *ctx)
+{
+ if (ctx->type == USBSSP_CTX_TYPE_DEVICE)
+ return (struct usbssp_slot_ctx *)ctx->bytes;
+
+ return (struct usbssp_slot_ctx *) (ctx->bytes +
+ CTX_SIZE(usbssp_data->hcc_params));
+}
+
+struct usbssp_ep_ctx *usbssp_get_ep_ctx(struct usbssp_udc *usbssp_data,
+ struct usbssp_container_ctx *ctx,
+ unsigned int ep_index)
+{
+ /* increment ep index by offset of start of ep ctx array */
+ ep_index++;
+ if (ctx->type == USBSSP_CTX_TYPE_INPUT)
+ ep_index++;
+
+ return (struct usbssp_ep_ctx *) (ctx->bytes +
+ (ep_index * CTX_SIZE(usbssp_data->hcc_params)));
+}
+
+
+/***************** Streams structures manipulation *************************/
+static void usbssp_free_stream_ctx(struct usbssp_udc *usbssp_data,
+ unsigned int num_stream_ctxs,
+ struct usbssp_stream_ctx *stream_ctx,
+ dma_addr_t dma)
+{
+ struct device *dev = usbssp_data->dev;
+ size_t size = sizeof(struct usbssp_stream_ctx) * num_stream_ctxs;
+
+ if (size > MEDIUM_STREAM_ARRAY_SIZE)
+ dma_free_coherent(dev, size, stream_ctx, dma);
+ else if (size <= SMALL_STREAM_ARRAY_SIZE)
+ return dma_pool_free(usbssp_data->small_streams_pool,
+ stream_ctx, dma);
+ else
+ return dma_pool_free(usbssp_data->medium_streams_pool,
+ stream_ctx, dma);
+}
+
+
+/*
+ * The stream context array for each endpoint with bulk streams enabled can
+ * vary in size, based on:
+ * - how many streams the endpoint supports,
+ * - the maximum primary stream array size the host controller supports,
+ * - and how many streams the device driver asks for.
+ *
+ * The stream context array must be a power of 2, and can be as small as
+ * 64 bytes or as large as 1MB.
+ */
+static struct usbssp_stream_ctx *usbssp_alloc_stream_ctx(
+ struct usbssp_udc *usbssp_data,
+ unsigned int num_stream_ctxs,
+ dma_addr_t *dma,
+ gfp_t mem_flags)
+{
+ struct device *dev = usbssp_data->dev;
+ size_t size = sizeof(struct usbssp_stream_ctx) * num_stream_ctxs;
+
+ if (size > MEDIUM_STREAM_ARRAY_SIZE)
+ return dma_alloc_coherent(dev, size,
+ dma, mem_flags);
+ else if (size <= SMALL_STREAM_ARRAY_SIZE)
+ return dma_pool_alloc(usbssp_data->small_streams_pool,
+ mem_flags, dma);
+ else
+ return dma_pool_alloc(usbssp_data->medium_streams_pool,
+ mem_flags, dma);
+}
+
+
+struct usbssp_ring *usbssp_dma_to_transfer_ring(struct usbssp_ep *ep,
+ u64 address)
+{
+ if (ep->ep_state & EP_HAS_STREAMS)
+ return radix_tree_lookup(&ep->stream_info->trb_address_map,
+ address >> TRB_SEGMENT_SHIFT);
+ return ep->ring;
+}
+
+struct usbssp_ring *usbssp_stream_id_to_ring(struct usbssp_device *dev,
+ unsigned int ep_index,
+ unsigned int stream_id)
+{
+ struct usbssp_ep *ep = &dev->eps[ep_index];
+
+ if (stream_id == 0)
+ return ep->ring;
+
+ if (!ep->stream_info)
+ return NULL;
+
+ if (stream_id > ep->stream_info->num_streams)
+ return NULL;
+ return ep->stream_info->stream_rings[stream_id];
+}
+
+/*
+ * Change an endpoint's internal structure so it supports stream IDs. The
+ * number of requested streams includes stream 0, which cannot be used by device
+ * drivers.
+ *
+ * The number of stream contexts in the stream context array may be bigger than
+ * the number of streams the driver wants to use. This is because the number of
+ * stream context array entries must be a power of two.
+ */
+struct usbssp_stream_info *usbssp_alloc_stream_info(
+ struct usbssp_udc *usbssp_data,
+ unsigned int num_stream_ctxs,
+ unsigned int num_streams,
+ unsigned int max_packet,
+ gfp_t mem_flags)
+{
+ struct usbssp_stream_info *stream_info;
+ u32 cur_stream;
+ struct usbssp_ring *cur_ring;
+ u64 addr;
+ int ret;
+
+ usbssp_dbg(usbssp_data,
+ "Allocating %u streams and %u stream context array entries.\n",
+ num_streams, num_stream_ctxs);
+
+ if (usbssp_data->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
+ usbssp_dbg(usbssp_data,
+ "Command ring has no reserved TRBs available\n");
+ return NULL;
+ }
+ usbssp_data->cmd_ring_reserved_trbs++;
+
+ stream_info = kzalloc(sizeof(struct usbssp_stream_info), mem_flags);
+ if (!stream_info)
+ goto cleanup_trbs;
+
+ stream_info->num_streams = num_streams;
+ stream_info->num_stream_ctxs = num_stream_ctxs;
+
+ /* Initialize the array of virtual pointers to stream rings. */
+ stream_info->stream_rings =
+ kzalloc(sizeof(struct usbssp_ring *)*num_streams,
+ mem_flags);
+ if (!stream_info->stream_rings)
+ goto cleanup_info;
+
+ /* Initialize the array of DMA addresses for stream rings for the HW. */
+ stream_info->stream_ctx_array = usbssp_alloc_stream_ctx(
+ usbssp_data, num_stream_ctxs,
+ &stream_info->ctx_array_dma, mem_flags);
+ if (!stream_info->stream_ctx_array)
+ goto cleanup_ctx;
+ memset(stream_info->stream_ctx_array, 0,
+ sizeof(struct usbssp_stream_ctx)*num_stream_ctxs);
+
+ /* Allocate everything needed to free the stream rings later */
+ stream_info->free_streams_command =
+ usbssp_alloc_command(usbssp_data, true, mem_flags);
+ if (!stream_info->free_streams_command)
+ goto cleanup_ctx;
+
+ INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
+
+ /* Allocate rings for all the streams that the driver will use,
+ * and add their segment DMA addresses to the radix tree.
+ * Stream 0 is reserved.
+ */
+
+ for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
+ stream_info->stream_rings[cur_stream] =
+ usbssp_ring_alloc(usbssp_data, 2, 1, TYPE_STREAM,
+ max_packet, mem_flags);
+ cur_ring = stream_info->stream_rings[cur_stream];
+ if (!cur_ring)
+ goto cleanup_rings;
+ cur_ring->stream_id = cur_stream;
+ cur_ring->trb_address_map = &stream_info->trb_address_map;
+ /* Set deq ptr, cycle bit, and stream context type */
+ addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) |
+ cur_ring->cycle_state;
+ stream_info->stream_ctx_array[cur_stream].stream_ring =
+ cpu_to_le64(addr);
+ usbssp_dbg(usbssp_data,
+ "Setting stream %d ring ptr to 0x%08llx\n",
+ cur_stream, (unsigned long long) addr);
+
+ ret = usbssp_update_stream_mapping(cur_ring, mem_flags);
+ if (ret) {
+ usbssp_ring_free(usbssp_data, cur_ring);
+ stream_info->stream_rings[cur_stream] = NULL;
+ goto cleanup_rings;
+ }
+ }
+ /* Leave the other unused stream ring pointers in the stream context
+ * array initialized to zero. This will cause the DC to give us an
+ * error if the host asks for a stream ID we don't have setup (if it
+ * was any other way, the device controller would assume the ring is
+ * "empty" and wait forever for data to be queued to that stream ID).
+ */
+
+ return stream_info;
+
+cleanup_rings:
+ for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
+ cur_ring = stream_info->stream_rings[cur_stream];
+ if (cur_ring) {
+ usbssp_ring_free(usbssp_data, cur_ring);
+ stream_info->stream_rings[cur_stream] = NULL;
+ }
+ }
+ usbssp_free_command(usbssp_data, stream_info->free_streams_command);
+cleanup_ctx:
+ kfree(stream_info->stream_rings);
+cleanup_info:
+ kfree(stream_info);
+cleanup_trbs:
+ usbssp_data->cmd_ring_reserved_trbs--;
+ return NULL;
+}
+
+/*
+ * Sets the MaxPStreams field and the Linear Stream Array field.
+ * Sets the dequeue pointer to the stream context array.
+ */
+void usbssp_setup_streams_ep_input_ctx(struct usbssp_udc *usbssp_data,
+ struct usbssp_ep_ctx *ep_ctx,
+ struct usbssp_stream_info *stream_info)
+{
+ u32 max_primary_streams;
+ /* MaxPStreams is the number of stream context array entries, not the
+ * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
+ * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
+ */
+ max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_context_change,
+ "Setting number of stream ctx array entries to %u",
+ 1 << (max_primary_streams + 1));
+ ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
+ ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
+ | EP_HAS_LSA);
+ ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
+}
+
+/*
+ * Sets the MaxPStreams field and the Linear Stream Array field to 0.
+ * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
+ * not at the beginning of the ring).
+ */
+void usbssp_setup_no_streams_ep_input_ctx(struct usbssp_ep_ctx *ep_ctx,
+ struct usbssp_ep *ep)
+{
+ dma_addr_t addr;
+
+ ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
+ addr = usbssp_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
+ ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
+}
+
+/* Frees all stream contexts associated with the endpoint,
+ *
+ * Caller should fix the endpoint context streams fields.
+ */
+void usbssp_free_stream_info(struct usbssp_udc *usbssp_data,
+ struct usbssp_stream_info *stream_info)
+{
+ int cur_stream;
+ struct usbssp_ring *cur_ring;
+
+ if (!stream_info)
+ return;
+
+ for (cur_stream = 1; cur_stream < stream_info->num_streams;
+ cur_stream++) {
+ cur_ring = stream_info->stream_rings[cur_stream];
+ if (cur_ring) {
+ usbssp_ring_free(usbssp_data, cur_ring);
+ stream_info->stream_rings[cur_stream] = NULL;
+ }
+ }
+ usbssp_free_command(usbssp_data, stream_info->free_streams_command);
+ usbssp_data->cmd_ring_reserved_trbs--;
+ if (stream_info->stream_ctx_array)
+ usbssp_free_stream_ctx(usbssp_data,
+ stream_info->num_stream_ctxs,
+ stream_info->stream_ctx_array,
+ stream_info->ctx_array_dma);
+
+ kfree(stream_info->stream_rings);
+ kfree(stream_info);
+}
+
+
+/***************** Device context manipulation *************************/
+
+/* All the usbssp_tds in the ring's TD list should be freed at this point.
+ */
+void usbssp_free_priv_device(struct usbssp_udc *usbssp_data)
+{
+ struct usbssp_device *dev;
+ int i;
+
+ /* if slot_id = 0 then no device slot is used */
+ if (usbssp_data->slot_id == 0)
+ return;
+
+ dev = &usbssp_data->devs;
+ trace_usbssp_free_priv_device(dev);
+
+ usbssp_data->dcbaa->dev_context_ptrs[usbssp_data->slot_id] = 0;
+ if (!dev)
+ return;
+
+ for (i = 0; i < 31; ++i) {
+ if (dev->eps[i].ring)
+ usbssp_ring_free(usbssp_data, dev->eps[i].ring);
+
+ if (dev->eps[i].stream_info) {
+ usbssp_free_stream_info(usbssp_data,
+ dev->eps[i].stream_info);
+ }
+ }
+
+ if (dev->in_ctx)
+ usbssp_free_container_ctx(usbssp_data, dev->in_ctx);
+ if (dev->out_ctx)
+ usbssp_free_container_ctx(usbssp_data, dev->out_ctx);
+
+ usbssp_data->slot_id = 0;
+}
+
+int usbssp_alloc_priv_device(struct usbssp_udc *usbssp_data, gfp_t flags)
+{
+ struct usbssp_device *priv_dev;
+
+ /* Slot ID 0 is reserved */
+ if (usbssp_data->slot_id == 0) {
+ usbssp_warn(usbssp_data, "Bad Slot ID %d\n",
+ usbssp_data->slot_id);
+ return 0;
+ }
+
+ priv_dev = &usbssp_data->devs;
+
+ /* Allocate the (output) device context that will be
+ * used in the USBSSP.
+ */
+ priv_dev->out_ctx = usbssp_alloc_container_ctx(usbssp_data,
+ USBSSP_CTX_TYPE_DEVICE, flags);
+
+ if (!priv_dev->out_ctx)
+ goto fail;
+
+ usbssp_dbg(usbssp_data, "Slot %d output ctx = 0x%llx (dma)\n",
+ usbssp_data->slot_id,
+ (unsigned long long)priv_dev->out_ctx->dma);
+
+ /* Allocate the (input) device context for address device command */
+ priv_dev->in_ctx = usbssp_alloc_container_ctx(usbssp_data,
+ USBSSP_CTX_TYPE_INPUT, flags);
+
+ if (!priv_dev->in_ctx)
+ goto fail;
+
+ usbssp_dbg(usbssp_data, "Slot %d input ctx = 0x%llx (dma)\n",
+ usbssp_data->slot_id,
+ (unsigned long long)priv_dev->in_ctx->dma);
+
+ /* Allocate endpoint 0 ring */
+ priv_dev->eps[0].ring = usbssp_ring_alloc(usbssp_data, 2, 1,
+ TYPE_CTRL, 0, flags);
+ if (!priv_dev->eps[0].ring)
+ goto fail;
+
+ priv_dev->gadget = &usbssp_data->gadget;
+
+ /* Point to output device context in dcbaa. */
+ usbssp_data->dcbaa->dev_context_ptrs[usbssp_data->slot_id] =
+ cpu_to_le64(priv_dev->out_ctx->dma);
+ usbssp_dbg(usbssp_data, "Set slot id %d dcbaa entry %p to 0x%llx\n",
+ usbssp_data->slot_id,
+ &usbssp_data->dcbaa->dev_context_ptrs[usbssp_data->slot_id],
+ le64_to_cpu(usbssp_data->dcbaa->dev_context_ptrs[usbssp_data->slot_id]));
+
+ trace_usbssp_alloc_priv_device(priv_dev);
+ return 1;
+fail:
+ if (priv_dev->in_ctx)
+ usbssp_free_container_ctx(usbssp_data, priv_dev->in_ctx);
+ if (priv_dev->out_ctx)
+ usbssp_free_container_ctx(usbssp_data, priv_dev->out_ctx);
+
+ return 0;
+}
+
+void usbssp_copy_ep0_dequeue_into_input_ctx(struct usbssp_udc *usbssp_data)
+{
+ struct usbssp_device *priv_dev;
+ struct usbssp_ep_ctx *ep0_ctx;
+ struct usbssp_ring *ep_ring;
+
+ priv_dev = &usbssp_data->devs;
+ ep0_ctx = usbssp_get_ep_ctx(usbssp_data, priv_dev->in_ctx, 0);
+ ep_ring = priv_dev->eps[0].ring;
+ /*
+ * We don't keep track of the dequeue pointer very well after a
+ * Set TR dequeue pointer, so we're setting the dequeue pointer of the
+ * device to our enqueue pointer. This should only be called after a
+ * configured device has reset, so all control transfers should have
+ * been completed or cancelled before the reset.
+ */
+ ep0_ctx->deq = cpu_to_le64(usbssp_trb_virt_to_dma(ep_ring->enq_seg,
+ ep_ring->enqueue) | ep_ring->cycle_state);
+}
+
+/* Setup an DC private device for a Set Address command */
+int usbssp_setup_addressable_priv_dev(struct usbssp_udc *usbssp_data)
+{
+ struct usbssp_device *dev_priv;
+ struct usbssp_ep_ctx *ep0_ctx;
+ struct usbssp_slot_ctx *slot_ctx;
+ u32 max_packets;
+
+ dev_priv = &usbssp_data->devs;
+ /* Slot ID 0 is reserved */
+ if (usbssp_data->slot_id == 0 || !dev_priv->gadget) {
+ usbssp_warn(usbssp_data,
+ "Slot ID %d is not assigned to this device\n",
+ usbssp_data->slot_id);
+ return -EINVAL;
+ }
+
+ ep0_ctx = usbssp_get_ep_ctx(usbssp_data, dev_priv->in_ctx, 0);
+ slot_ctx = usbssp_get_slot_ctx(usbssp_data, dev_priv->in_ctx);
+
+ /* 3) Only the control endpoint is valid - one endpoint context */
+ slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) /*| udev->route*/);
+
+ switch (dev_priv->gadget->speed) {
+ case USB_SPEED_SUPER_PLUS:
+ slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
+ max_packets = MAX_PACKET(512);
+ break;
+ case USB_SPEED_SUPER:
+ slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
+ max_packets = MAX_PACKET(512);
+ break;
+ case USB_SPEED_HIGH:
+ slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
+ max_packets = MAX_PACKET(64);
+ break;
+ case USB_SPEED_FULL:
+ slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
+ max_packets = MAX_PACKET(64);
+ break;
+ case USB_SPEED_LOW:
+ slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
+ max_packets = MAX_PACKET(8);
+ break;
+ case USB_SPEED_WIRELESS:
+ usbssp_dbg(usbssp_data,
+ "USBSSP doesn't support wireless speeds\n");
+ return -EINVAL;
+ default:
+ /* Speed was not set , this shouldn't happen. */
+ return -EINVAL;
+ }
+
+ if (!usbssp_data->devs.port_num)
+ return -EINVAL;
+
+ slot_ctx->dev_info2 |=
+ cpu_to_le32(ROOT_DEV_PORT(usbssp_data->devs.port_num));
+ slot_ctx->dev_state |= (usbssp_data->device_address & DEV_ADDR_MASK);
+
+ ep0_ctx->tx_info = EP_AVG_TRB_LENGTH(0x8);
+ /*cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |*/
+
+ /* Step 4 - ring already allocated */
+ /* Step 5 */
+ ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
+
+ /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
+ ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
+ max_packets);
+
+ ep0_ctx->deq = cpu_to_le64(dev_priv->eps[0].ring->first_seg->dma |
+ dev_priv->eps[0].ring->cycle_state);
+
+ trace_usbssp_setup_addressable_priv_device(dev_priv);
+ /* Steps 7 and 8 were done in usbssp_alloc_priv_device() */
+
+ return 0;
+}
+
+/*
+ * Convert interval expressed as 2^(bInterval - 1) == interval into
+ * straight exponent value 2^n == interval.
+ *
+ */
+static unsigned int usbssp_parse_exponent_interval(struct usb_gadget *g,
+ struct usbssp_ep *dep)
+{
+ unsigned int interval;
+
+ interval = clamp_val(dep->endpoint.desc->bInterval, 1, 16) - 1;
+ if (interval != dep->endpoint.desc->bInterval - 1)
+ dev_warn(&g->dev,
+ "ep %#x - rounding interval to %d %sframes\n",
+ dep->endpoint.desc->bEndpointAddress,
+ 1 << interval,
+ g->speed == USB_SPEED_FULL ? "" : "micro");
+
+ if (g->speed == USB_SPEED_FULL) {
+ /*
+ * Full speed isoc endpoints specify interval in frames,
+ * not microframes. We are using microframes everywhere,
+ * so adjust accordingly.
+ */
+ interval += 3; /* 1 frame = 2^3 uframes */
+ }
+
+ return interval;
+}
+
+/*
+ * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
+ * microframes, rounded down to nearest power of 2.
+ */
+static unsigned int usbssp_microframes_to_exponent(struct usb_gadget *g,
+ struct usbssp_ep *dep,
+ unsigned int desc_interval,
+ unsigned int min_exponent,
+ unsigned int max_exponent)
+{
+ unsigned int interval;
+
+ interval = fls(desc_interval) - 1;
+ interval = clamp_val(interval, min_exponent, max_exponent);
+ if ((1 << interval) != desc_interval)
+ dev_dbg(&g->dev,
+ "ep %#x - rounding interval to %d microframes,"
+ "ep desc says %d microframes\n",
+ dep->endpoint.desc->bEndpointAddress,
+ 1 << interval,
+ desc_interval);
+
+ return interval;
+}
+
+static unsigned int usbssp_parse_microframe_interval(struct usb_gadget *g,
+ struct usbssp_ep *dep)
+{
+ if (dep->endpoint.desc->bInterval == 0)
+ return 0;
+ return usbssp_microframes_to_exponent(g, dep,
+ dep->endpoint.desc->bInterval, 0, 15);
+}
+
+
+static unsigned int usbssp_parse_frame_interval(struct usb_gadget *g,
+ struct usbssp_ep *dep)
+{
+
+ return usbssp_microframes_to_exponent(g, dep,
+ dep->endpoint.desc->bInterval * 8, 3, 10);
+}
+
+/* Return the polling or NAK interval.
+ *
+ * The polling interval is expressed in "microframes". If DC's Interval field
+ * is set to N, it will service the endpoint every 2^(Interval)*125us.
+ *
+ * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
+ * is set to 0.
+ */
+static unsigned int usbssp_get_endpoint_interval(struct usb_gadget *g,
+ struct usbssp_ep *dep)
+{
+ unsigned int interval = 0;
+
+ switch (g->speed) {
+ case USB_SPEED_HIGH:
+ /* Max NAK rate */
+ if (usb_endpoint_xfer_control(dep->endpoint.desc) ||
+ usb_endpoint_xfer_bulk(dep->endpoint.desc)) {
+ interval = usbssp_parse_microframe_interval(g, dep);
+ break;
+ }
+ /* Fall through - SS and HS isoc/int have same decoding */
+
+ case USB_SPEED_SUPER_PLUS:
+ case USB_SPEED_SUPER:
+ if (usb_endpoint_xfer_int(dep->endpoint.desc) ||
+ usb_endpoint_xfer_isoc(dep->endpoint.desc)) {
+ interval = usbssp_parse_exponent_interval(g, dep);
+ }
+ break;
+
+ case USB_SPEED_FULL:
+ if (usb_endpoint_xfer_isoc(dep->endpoint.desc)) {
+ interval = usbssp_parse_exponent_interval(g, dep);
+ break;
+ }
+ /*
+ * Fall through for interrupt endpoint interval decoding
+ * since it uses the same rules as low speed interrupt
+ * endpoints.
+ */
+
+ case USB_SPEED_LOW:
+ if (usb_endpoint_xfer_int(dep->endpoint.desc) ||
+ usb_endpoint_xfer_isoc(dep->endpoint.desc)) {
+
+ interval = usbssp_parse_frame_interval(g, dep);
+ }
+ break;
+
+ default:
+ BUG();
+ }
+ return interval;
+}
+
+/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
+ * High speed endpoint descriptors can define "the number of additional
+ * transaction opportunities per microframe", but that goes in the Max Burst
+ * endpoint context field.
+ */
+static u32 usbssp_get_endpoint_mult(struct usb_gadget *g,
+ struct usbssp_ep *dep)
+{
+ if (g->speed < USB_SPEED_SUPER ||
+ !usb_endpoint_xfer_isoc(dep->endpoint.desc))
+ return 0;
+
+ return dep->endpoint.comp_desc->bmAttributes;
+}
+
+static u32 usbssp_get_endpoint_max_burst(struct usb_gadget *g,
+ struct usbssp_ep *dep)
+{
+ /* Super speed and Plus have max burst in ep companion desc */
+ if (g->speed >= USB_SPEED_SUPER)
+ return dep->endpoint.comp_desc->bMaxBurst;
+
+ if (g->speed == USB_SPEED_HIGH &&
+ (usb_endpoint_xfer_isoc(dep->endpoint.desc) ||
+ usb_endpoint_xfer_int(dep->endpoint.desc)))
+ return (usb_endpoint_maxp(dep->endpoint.desc) & 0x1800) >> 11;
+
+ return 0;
+}
+
+static u32 usbssp_get_endpoint_type(const struct usb_endpoint_descriptor *desc)
+{
+ int in;
+
+ in = usb_endpoint_dir_in(desc);
+
+ switch (usb_endpoint_type(desc)) {
+ case USB_ENDPOINT_XFER_CONTROL:
+ return CTRL_EP;
+ case USB_ENDPOINT_XFER_BULK:
+ return in ? BULK_IN_EP : BULK_OUT_EP;
+ case USB_ENDPOINT_XFER_ISOC:
+ return in ? ISOC_IN_EP : ISOC_OUT_EP;
+ case USB_ENDPOINT_XFER_INT:
+ return in ? INT_IN_EP : INT_OUT_EP;
+ }
+ return 0;
+}
+
+/* Return the maximum endpoint service interval time (ESIT) payload.
+ * Basically, this is the maxpacket size, multiplied by the burst size
+ * and mult size.
+ */
+static u32 usbssp_get_max_esit_payload(struct usb_gadget *g,
+ struct usbssp_ep *dep)
+{
+ int max_burst;
+ int max_packet;
+
+ /* Only applies for interrupt or isochronous endpoints*/
+ if (usb_endpoint_xfer_control(dep->endpoint.desc) ||
+ usb_endpoint_xfer_bulk(dep->endpoint.desc))
+ return 0;
+
+ /* SuperSpeedPlus Isoc ep sending over 48k per esit*/
+
+ if ((g->speed >= USB_SPEED_SUPER_PLUS) &&
+ USB_SS_SSP_ISOC_COMP(dep->endpoint.desc->bmAttributes))
+ return le32_to_cpu(dep->endpoint.comp_desc->wBytesPerInterval);
+ /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
+ else if (g->speed >= USB_SPEED_SUPER)
+ return le16_to_cpu(dep->endpoint.comp_desc->wBytesPerInterval);
+
+ max_packet = usb_endpoint_maxp(dep->endpoint.desc);
+ max_burst = usb_endpoint_maxp_mult(dep->endpoint.desc);
+ /* A 0 in max burst means 1 transfer per ESIT */
+ return max_packet * max_burst;
+}
+
+/* Set up an endpoint with one ring segment. Do not allocate stream rings.
+ * Drivers will have to call usb_alloc_streams() to do that.
+ */
+int usbssp_endpoint_init(struct usbssp_udc *usbssp_data,
+ struct usbssp_device *dev_priv,
+ struct usbssp_ep *dep,
+ gfp_t mem_flags)
+{
+ unsigned int ep_index;
+ struct usbssp_ep_ctx *ep_ctx;
+ struct usbssp_ring *ep_ring;
+ unsigned int max_packet;
+ enum usbssp_ring_type ring_type;
+ u32 max_esit_payload;
+ u32 endpoint_type;
+ unsigned int max_burst;
+ unsigned int interval;
+ unsigned int mult;
+ unsigned int avg_trb_len;
+ unsigned int err_count = 0;
+
+ ep_index = usbssp_get_endpoint_index(dep->endpoint.desc);
+ ep_ctx = usbssp_get_ep_ctx(usbssp_data, dev_priv->in_ctx, ep_index);
+
+ endpoint_type = usbssp_get_endpoint_type(dep->endpoint.desc);
+ if (!endpoint_type)
+ return -EINVAL;
+
+ ring_type = usb_endpoint_type(dep->endpoint.desc);
+
+ /*
+ * Get values to fill the endpoint context, mostly from ep descriptor.
+ * The average TRB buffer lengt for bulk endpoints is unclear as we
+ * have no clue on scatter gather list entry size. For Isoc and Int,
+ * set it to max available.
+ */
+ max_esit_payload =
+ usbssp_get_max_esit_payload(&usbssp_data->gadget, dep);
+ interval = usbssp_get_endpoint_interval(&usbssp_data->gadget, dep);
+ mult = usbssp_get_endpoint_mult(&usbssp_data->gadget, dep);
+ max_packet = GET_MAX_PACKET(usb_endpoint_maxp(dep->endpoint.desc));
+ max_burst = usbssp_get_endpoint_max_burst(&usbssp_data->gadget, dep);
+ avg_trb_len = max_esit_payload;
+
+ /* Allow 3 retries for everything but isoc, set CErr = 3 */
+ if (!usb_endpoint_xfer_isoc(dep->endpoint.desc))
+ err_count = 3;
+ if (usb_endpoint_xfer_bulk(dep->endpoint.desc) &&
+ usbssp_data->gadget.speed == USB_SPEED_HIGH)
+ max_packet = 512;
+ /* DC spec indicates that ctrl ep avg TRB Length should be 8 */
+ if (usb_endpoint_xfer_control(dep->endpoint.desc))
+ avg_trb_len = 8;
+
+ /* Set up the endpoint ring */
+ dev_priv->eps[ep_index].new_ring = usbssp_ring_alloc(usbssp_data, 2, 1,
+ ring_type, max_packet, mem_flags);
+
+ dev_priv->eps[ep_index].skip = false;
+ ep_ring = dev_priv->eps[ep_index].new_ring;
+
+ /* Fill the endpoint context */
+ ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
+ EP_INTERVAL(interval) | EP_MULT(mult));
+ ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
+ MAX_PACKET(max_packet) | MAX_BURST(max_burst) |
+ ERROR_COUNT(err_count));
+ ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
+ ep_ring->cycle_state);
+
+ ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
+ EP_AVG_TRB_LENGTH(avg_trb_len));
+
+ return 0;
+}
+
+void usbssp_endpoint_zero(struct usbssp_udc *usbssp_data,
+ struct usbssp_device *dev_priv,
+ struct usbssp_ep *ep)
+{
+ unsigned int ep_index;
+ struct usbssp_ep_ctx *ep_ctx;
+
+ ep_index = usbssp_get_endpoint_index(ep->endpoint.desc);
+ ep_ctx = usbssp_get_ep_ctx(usbssp_data, dev_priv->in_ctx, ep_index);
+
+ ep_ctx->ep_info = 0;
+ ep_ctx->ep_info2 = 0;
+ ep_ctx->deq = 0;
+ ep_ctx->tx_info = 0;
+ /* Don't free the endpoint ring until the set interface or configuration
+ * request succeeds.
+ */
+}
+
+/* Copy output usbssp_ep_ctx to the input usbssp_ep_ctx copy.
+ * Useful when you want to change one particular aspect of the endpoint and then
+ * issue a configure endpoint command.
+ */
+void usbssp_endpoint_copy(struct usbssp_udc *usbssp_data,
+ struct usbssp_container_ctx *in_ctx,
+ struct usbssp_container_ctx *out_ctx,
+ unsigned int ep_index)
+{
+ struct usbssp_ep_ctx *out_ep_ctx;
+ struct usbssp_ep_ctx *in_ep_ctx;
+
+ out_ep_ctx = usbssp_get_ep_ctx(usbssp_data, out_ctx, ep_index);
+ in_ep_ctx = usbssp_get_ep_ctx(usbssp_data, in_ctx, ep_index);
+
+ in_ep_ctx->ep_info = out_ep_ctx->ep_info;
+ in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
+ in_ep_ctx->deq = out_ep_ctx->deq;
+ in_ep_ctx->tx_info = out_ep_ctx->tx_info;
+}
+
+/* Copy output usbssp_slot_ctx to the input usbssp_slot_ctx.
+ * Useful when you want to change one particular aspect of the endpoint and then
+ * issue a configure endpoint command. Only the context entries field matters,
+ * but we'll copy the whole thing anyway.
+ */
+void usbssp_slot_copy(struct usbssp_udc *usbssp_data,
+ struct usbssp_container_ctx *in_ctx,
+ struct usbssp_container_ctx *out_ctx)
+{
+ struct usbssp_slot_ctx *in_slot_ctx;
+ struct usbssp_slot_ctx *out_slot_ctx;
+
+ in_slot_ctx = usbssp_get_slot_ctx(usbssp_data, in_ctx);
+ out_slot_ctx = usbssp_get_slot_ctx(usbssp_data, out_ctx);
+
+ in_slot_ctx->dev_info = out_slot_ctx->dev_info;
+ in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
+ in_slot_ctx->int_target = out_slot_ctx->int_target;
+ in_slot_ctx->dev_state = out_slot_ctx->dev_state;
+}
+
+/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
+static int scratchpad_alloc(struct usbssp_udc *usbssp_data, gfp_t flags)
+{
+ int i;
+ struct device *dev = usbssp_data->dev;
+ int num_sp = HCS_MAX_SCRATCHPAD(usbssp_data->hcs_params2);
+
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "Allocating %d scratchpad buffers", num_sp);
+
+ if (!num_sp)
+ return 0;
+
+ usbssp_data->scratchpad = kzalloc(sizeof(*usbssp_data->scratchpad),
+ flags);
+ if (!usbssp_data->scratchpad)
+ goto fail_sp;
+
+ usbssp_data->scratchpad->sp_array =
+ dma_alloc_coherent(dev, num_sp * sizeof(u64),
+ &usbssp_data->scratchpad->sp_dma,
+ flags);
+
+ if (!usbssp_data->scratchpad->sp_array)
+ goto fail_sp2;
+
+ usbssp_data->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp,
+ flags);
+ if (!usbssp_data->scratchpad->sp_buffers)
+ goto fail_sp3;
+
+ usbssp_data->dcbaa->dev_context_ptrs[0] =
+ cpu_to_le64(usbssp_data->scratchpad->sp_dma);
+ for (i = 0; i < num_sp; i++) {
+ dma_addr_t dma;
+
+ void *buf = dma_zalloc_coherent(dev, usbssp_data->page_size,
+ &dma, flags);
+
+ if (!buf)
+ goto fail_sp4;
+
+ usbssp_data->scratchpad->sp_array[i] = dma;
+ usbssp_data->scratchpad->sp_buffers[i] = buf;
+ }
+
+ return 0;
+
+fail_sp4:
+ for (i = i - 1; i >= 0; i--) {
+ dma_free_coherent(dev, usbssp_data->page_size,
+ usbssp_data->scratchpad->sp_buffers[i],
+ usbssp_data->scratchpad->sp_array[i]);
+ }
+
+ kfree(usbssp_data->scratchpad->sp_buffers);
+
+fail_sp3:
+ dma_free_coherent(dev, num_sp * sizeof(u64),
+ usbssp_data->scratchpad->sp_array,
+ usbssp_data->scratchpad->sp_dma);
+
+fail_sp2:
+ kfree(usbssp_data->scratchpad);
+ usbssp_data->scratchpad = NULL;
+
+fail_sp:
+ return -ENOMEM;
+}
+
+static void scratchpad_free(struct usbssp_udc *usbssp_data)
+{
+ int num_sp;
+ int i;
+ struct device *dev = usbssp_data->dev;
+
+ if (!usbssp_data->scratchpad)
+ return;
+
+ num_sp = HCS_MAX_SCRATCHPAD(usbssp_data->hcs_params2);
+
+ for (i = 0; i < num_sp; i++) {
+ dma_free_coherent(dev, usbssp_data->page_size,
+ usbssp_data->scratchpad->sp_buffers[i],
+ usbssp_data->scratchpad->sp_array[i]);
+ }
+
+ kfree(usbssp_data->scratchpad->sp_buffers);
+ dma_free_coherent(dev, num_sp * sizeof(u64),
+ usbssp_data->scratchpad->sp_array,
+ usbssp_data->scratchpad->sp_dma);
+ kfree(usbssp_data->scratchpad);
+ usbssp_data->scratchpad = NULL;
+}
+
+struct usbssp_command *usbssp_alloc_command(struct usbssp_udc *usbssp_data,
+ bool allocate_completion,
+ gfp_t mem_flags)
+{
+ struct usbssp_command *command;
+
+ command = kzalloc(sizeof(*command), mem_flags);
+ if (!command)
+ return NULL;
+
+ if (allocate_completion) {
+ command->completion =
+ kzalloc(sizeof(struct completion), mem_flags);
+ if (!command->completion) {
+ kfree(command);
+ return NULL;
+ }
+ init_completion(command->completion);
+ }
+
+ command->status = 0;
+ INIT_LIST_HEAD(&command->cmd_list);
+
+ return command;
+}
+
+struct usbssp_command *usbssp_alloc_command_with_ctx(
+ struct usbssp_udc *usbssp_data,
+ bool allocate_completion,
+ gfp_t mem_flags)
+{
+ struct usbssp_command *command;
+
+ command = usbssp_alloc_command(usbssp_data,
+ allocate_completion, mem_flags);
+ if (!command)
+ return NULL;
+
+ command->in_ctx = usbssp_alloc_container_ctx(usbssp_data,
+ USBSSP_CTX_TYPE_INPUT, mem_flags);
+ if (!command->in_ctx) {
+ kfree(command->completion);
+ kfree(command);
+ return NULL;
+ }
+ return command;
+}
+
+void usbssp_request_free_priv(struct usbssp_request *priv_req)
+{
+ if (priv_req)
+ kfree(priv_req->td);
+}
+
+void usbssp_free_command(struct usbssp_udc *usbssp_data,
+ struct usbssp_command *command)
+{
+ usbssp_free_container_ctx(usbssp_data, command->in_ctx);
+ kfree(command->completion);
+ kfree(command);
+}
+
+int usbssp_alloc_erst(struct usbssp_udc *usbssp_data,
+ struct usbssp_ring *evt_ring,
+ struct usbssp_erst *erst,
+ gfp_t flags)
+{
+ size_t size;
+ unsigned int val;
+ struct usbssp_segment *seg;
+ struct usbssp_erst_entry *entry;
+
+ size = sizeof(struct usbssp_erst_entry) * evt_ring->num_segs;
+ erst->entries = dma_zalloc_coherent(usbssp_data->dev,
+ size, &erst->erst_dma_addr, flags);
+ if (!erst->entries)
+ return -ENOMEM;
+
+ erst->num_entries = evt_ring->num_segs;
+
+ seg = evt_ring->first_seg;
+ for (val = 0; val < evt_ring->num_segs; val++) {
+ entry = &erst->entries[val];
+ entry->seg_addr = cpu_to_le64(seg->dma);
+ entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
+ entry->rsvd = 0;
+ seg = seg->next;
+ }
+
+ return 0;
+}
+
+void usbssp_free_erst(struct usbssp_udc *usbssp_data, struct usbssp_erst *erst)
+{
+ size_t size;
+ struct device *dev = usbssp_data->dev;
+
+ size = sizeof(struct usbssp_erst_entry) * (erst->num_entries);
+ if (erst->entries)
+ dma_free_coherent(dev, size, erst->entries,
+ erst->erst_dma_addr);
+ erst->entries = NULL;
+}
+
+void usbssp_mem_cleanup(struct usbssp_udc *usbssp_data)
+{
+ struct device *dev = usbssp_data->dev;
+ int num_ports;
+
+ cancel_delayed_work_sync(&usbssp_data->cmd_timer);
+ cancel_work_sync(&usbssp_data->bottom_irq);
+ destroy_workqueue(usbssp_data->bottom_irq_wq);
+
+ /* Free the Event Ring Segment Table and the actual Event Ring */
+ usbssp_free_erst(usbssp_data, &usbssp_data->erst);
+
+ if (usbssp_data->event_ring)
+ usbssp_ring_free(usbssp_data, usbssp_data->event_ring);
+ usbssp_data->event_ring = NULL;
+ usbssp_dbg_trace(usbssp_data,
+ trace_usbssp_dbg_init, "Freed event ring");
+
+ if (usbssp_data->cmd_ring)
+ usbssp_ring_free(usbssp_data, usbssp_data->cmd_ring);
+ usbssp_data->cmd_ring = NULL;
+ usbssp_dbg_trace(usbssp_data,
+ trace_usbssp_dbg_init, "Freed command ring");
+ usbssp_cleanup_command_queue(usbssp_data);
+
+ num_ports = HCS_MAX_PORTS(usbssp_data->hcs_params1);
+
+ usbssp_free_priv_device(usbssp_data);
+
+ dma_pool_destroy(usbssp_data->segment_pool);
+ usbssp_data->segment_pool = NULL;
+ usbssp_dbg_trace(usbssp_data,
+ trace_usbssp_dbg_init, "Freed segment pool");
+ dma_pool_destroy(usbssp_data->device_pool);
+ usbssp_data->device_pool = NULL;
+ usbssp_dbg_trace(usbssp_data,
+ trace_usbssp_dbg_init, "Freed device context pool");
+ dma_pool_destroy(usbssp_data->small_streams_pool);
+ usbssp_data->small_streams_pool = NULL;
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "Freed small stream array pool");
+
+ dma_pool_destroy(usbssp_data->medium_streams_pool);
+ usbssp_data->medium_streams_pool = NULL;
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "Freed medium stream array pool");
+
+ if (usbssp_data->dcbaa)
+ dma_free_coherent(dev, sizeof(*usbssp_data->dcbaa),
+ usbssp_data->dcbaa, usbssp_data->dcbaa->dma);
+
+ usbssp_data->dcbaa = NULL;
+
+ scratchpad_free(usbssp_data);
+
+ usbssp_data->cmd_ring_reserved_trbs = 0;
+ usbssp_data->num_usb2_ports = 0;
+ usbssp_data->num_usb3_ports = 0;
+ usbssp_data->num_active_eps = 0;
+ kfree(usbssp_data->port_array);
+ kfree(usbssp_data->ext_caps);
+ usbssp_data->usb2_ports = NULL;
+ usbssp_data->usb3_ports = NULL;
+ usbssp_data->port_array = NULL;
+ usbssp_data->ext_caps = NULL;
+
+ usbssp_data->page_size = 0;
+ usbssp_data->page_shift = 0;
+}
+
+static int usbssp_test_trb_in_td(struct usbssp_udc *usbssp_data,
+ struct usbssp_segment *input_seg,
+ union usbssp_trb *start_trb,
+ union usbssp_trb *end_trb,
+ dma_addr_t input_dma,
+ struct usbssp_segment *result_seg,
+ char *test_name, int test_number)
+{
+ unsigned long long start_dma;
+ unsigned long long end_dma;
+ struct usbssp_segment *seg;
+
+ start_dma = usbssp_trb_virt_to_dma(input_seg, start_trb);
+ end_dma = usbssp_trb_virt_to_dma(input_seg, end_trb);
+
+ seg = usbssp_trb_in_td(usbssp_data, input_seg, start_trb,
+ end_trb, input_dma, false);
+ if (seg != result_seg) {
+ usbssp_warn(usbssp_data, "WARN: %s TRB math test %d failed!\n",
+ test_name, test_number);
+ usbssp_warn(usbssp_data, "Tested TRB math w/ seg %p and "
+ "input DMA 0x%llx\n",
+ input_seg,
+ (unsigned long long) input_dma);
+ usbssp_warn(usbssp_data, "starting TRB %p (0x%llx DMA), "
+ "ending TRB %p (0x%llx DMA)\n",
+ start_trb, start_dma,
+ end_trb, end_dma);
+ usbssp_warn(usbssp_data, "Expected seg %p, got seg %p\n",
+ result_seg, seg);
+ usbssp_trb_in_td(usbssp_data, input_seg, start_trb,
+ end_trb, input_dma, true);
+ return -1;
+ }
+ return 0;
+}
+
+/* TRB math checks for usbssp_trb_in_td(), using the command and event rings. */
+static int usbssp_check_trb_in_td_math(struct usbssp_udc *usbssp_data)
+{
+ struct {
+ dma_addr_t input_dma;
+ struct usbssp_segment *result_seg;
+ } simple_test_vector[] = {
+ /* A zeroed DMA field should fail */
+ { 0, NULL },
+ /* One TRB before the ring start should fail */
+ { usbssp_data->event_ring->first_seg->dma - 16, NULL },
+ /* One byte before the ring start should fail */
+ { usbssp_data->event_ring->first_seg->dma - 1, NULL },
+ /* Starting TRB should succeed */
+ { usbssp_data->event_ring->first_seg->dma,
+ usbssp_data->event_ring->first_seg },
+ /* Ending TRB should succeed */
+ { usbssp_data->event_ring->first_seg->dma +
+ (TRBS_PER_SEGMENT - 1)*16,
+ usbssp_data->event_ring->first_seg },
+ /* One byte after the ring end should fail */
+ { usbssp_data->event_ring->first_seg->dma +
+ (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
+ /* One TRB after the ring end should fail */
+ { usbssp_data->event_ring->first_seg->dma +
+ (TRBS_PER_SEGMENT)*16, NULL },
+ /* An address of all ones should fail */
+ { (dma_addr_t) (~0), NULL },
+ };
+ struct {
+ struct usbssp_segment *input_seg;
+ union usbssp_trb *start_trb;
+ union usbssp_trb *end_trb;
+ dma_addr_t input_dma;
+ struct usbssp_segment *result_seg;
+ } complex_test_vector[] = {
+ /* Test feeding a valid DMA address from a different ring */
+ { .input_seg = usbssp_data->event_ring->first_seg,
+ .start_trb = usbssp_data->event_ring->first_seg->trbs,
+ .end_trb = &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
+ .input_dma = usbssp_data->cmd_ring->first_seg->dma,
+ .result_seg = NULL,
+ },
+ /* Test feeding a valid end TRB from a different ring */
+ { .input_seg = usbssp_data->event_ring->first_seg,
+ .start_trb = usbssp_data->event_ring->first_seg->trbs,
+ .end_trb = &usbssp_data->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
+ .input_dma = usbssp_data->cmd_ring->first_seg->dma,
+ .result_seg = NULL,
+ },
+ /* Test feeding a valid start and end TRB from a different ring */
+ { .input_seg = usbssp_data->event_ring->first_seg,
+ .start_trb = usbssp_data->cmd_ring->first_seg->trbs,
+ .end_trb = &usbssp_data->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
+ .input_dma = usbssp_data->cmd_ring->first_seg->dma,
+ .result_seg = NULL,
+ },
+ /* TRB in this ring, but after this TD */
+ { .input_seg = usbssp_data->event_ring->first_seg,
+ .start_trb = &usbssp_data->event_ring->first_seg->trbs[0],
+ .end_trb = &usbssp_data->event_ring->first_seg->trbs[3],
+ .input_dma = usbssp_data->event_ring->first_seg->dma + 4*16,
+ .result_seg = NULL,
+ },
+ /* TRB in this ring, but before this TD */
+ { .input_seg = usbssp_data->event_ring->first_seg,
+ .start_trb = &usbssp_data->event_ring->first_seg->trbs[3],
+ .end_trb = &usbssp_data->event_ring->first_seg->trbs[6],
+ .input_dma = usbssp_data->event_ring->first_seg->dma + 2*16,
+ .result_seg = NULL,
+ },
+ /* TRB in this ring, but after this wrapped TD */
+ { .input_seg = usbssp_data->event_ring->first_seg,
+ .start_trb = &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
+ .end_trb = &usbssp_data->event_ring->first_seg->trbs[1],
+ .input_dma = usbssp_data->event_ring->first_seg->dma + 2*16,
+ .result_seg = NULL,
+ },
+ /* TRB in this ring, but before this wrapped TD */
+ { .input_seg = usbssp_data->event_ring->first_seg,
+ .start_trb = &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
+ .end_trb = &usbssp_data->event_ring->first_seg->trbs[1],
+ .input_dma = usbssp_data->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
+ .result_seg = NULL,
+ },
+ /* TRB not in this ring, and we have a wrapped TD */
+ { .input_seg = usbssp_data->event_ring->first_seg,
+ .start_trb = &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
+ .end_trb = &usbssp_data->event_ring->first_seg->trbs[1],
+ .input_dma = usbssp_data->cmd_ring->first_seg->dma + 2*16,
+ .result_seg = NULL,
+ },
+ };
+
+ unsigned int num_tests;
+ int i, ret;
+
+ num_tests = ARRAY_SIZE(simple_test_vector);
+ for (i = 0; i < num_tests; i++) {
+ ret = usbssp_test_trb_in_td(usbssp_data,
+ usbssp_data->event_ring->first_seg,
+ usbssp_data->event_ring->first_seg->trbs,
+ &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
+ simple_test_vector[i].input_dma,
+ simple_test_vector[i].result_seg,
+ "Simple", i);
+ if (ret < 0)
+ return ret;
+ }
+
+ num_tests = ARRAY_SIZE(complex_test_vector);
+ for (i = 0; i < num_tests; i++) {
+ ret = usbssp_test_trb_in_td(usbssp_data,
+ complex_test_vector[i].input_seg,
+ complex_test_vector[i].start_trb,
+ complex_test_vector[i].end_trb,
+ complex_test_vector[i].input_dma,
+ complex_test_vector[i].result_seg,
+ "Complex", i);
+ if (ret < 0)
+ return ret;
+ }
+ usbssp_dbg(usbssp_data, "TRB math tests passed.\n");
+ return 0;
+}
+
+static void usbssp_set_event_deq(struct usbssp_udc *usbssp_data)
+{
+ u64 temp;
+ dma_addr_t deq;
+
+ deq = usbssp_trb_virt_to_dma(usbssp_data->event_ring->deq_seg,
+ usbssp_data->event_ring->dequeue);
+ if (deq == 0 && !in_interrupt())
+ usbssp_warn(usbssp_data,
+ "WARN something wrong with SW event ring dequeue ptr.\n");
+ /* Update USBSSP event ring dequeue pointer */
+ temp = usbssp_read_64(usbssp_data, &usbssp_data->ir_set->erst_dequeue);
+ temp &= ERST_PTR_MASK;
+ /* Don't clear the EHB bit (which is RW1C) because
+ * there might be more events to service.
+ */
+ temp &= ~ERST_EHB;
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// Write event ring dequeue pointer, preserving EHB bit");
+ usbssp_write_64(usbssp_data, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
+ &usbssp_data->ir_set->erst_dequeue);
+}
+
+static void usbssp_add_in_port(struct usbssp_udc *usbssp_data,
+ unsigned int num_ports,
+ __le32 __iomem *addr,
+ int max_caps)
+{
+ u32 temp, port_offset, port_count;
+ int i;
+ u8 major_revision;
+ struct usbssp_ports *rport;
+
+ temp = readl(addr);
+ major_revision = USBSSP_EXT_PORT_MAJOR(temp);
+
+ if (major_revision == 0x03) {
+ rport = &usbssp_data->usb3_rhub;
+ } else if (major_revision <= 0x02) {
+ rport = &usbssp_data->usb2_rhub;
+ } else {
+ usbssp_warn(usbssp_data, "Ignoring unknown port speed, "
+ "Ext Cap %p, revision = 0x%x\n",
+ addr, major_revision);
+ /* Ignoring port protocol we can't understand. */
+ return;
+ }
+
+ rport->maj_rev = USBSSP_EXT_PORT_MAJOR(temp);
+ rport->min_rev = USBSSP_EXT_PORT_MINOR(temp);
+
+ /* Port offset and count in the third dword, see section 7.2 */
+ temp = readl(addr + 2);
+ port_offset = USBSSP_EXT_PORT_OFF(temp);
+ port_count = USBSSP_EXT_PORT_COUNT(temp);
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
+ addr, port_offset, port_count, major_revision);
+
+ if (port_count > 1) {
+ usbssp_warn(usbssp_data,
+ "DC support only single port but it detect %d ports",
+ port_count);
+ port_count = 1;
+ }
+ /* Port count includes the current port offset */
+ if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
+ return;
+
+ rport->psi_count = USBSSP_EXT_PORT_PSIC(temp);
+ if (rport->psi_count) {
+ rport->psi = kcalloc(rport->psi_count, sizeof(*rport->psi),
+ GFP_KERNEL);
+ if (!rport->psi)
+ rport->psi_count = 0;
+
+ rport->psi_uid_count++;
+ for (i = 0; i < rport->psi_count; i++) {
+ rport->psi[i] = readl(addr + 4 + i);
+
+ /* count unique ID values, two consecutive entries can
+ * have the same ID if link is assymetric
+ */
+ if (i && (USBSSP_EXT_PORT_PSIV(rport->psi[i]) !=
+ USBSSP_EXT_PORT_PSIV(rport->psi[i - 1])))
+ rport->psi_uid_count++;
+
+ usbssp_dbg(usbssp_data,
+ "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
+ USBSSP_EXT_PORT_PSIV(rport->psi[i]),
+ USBSSP_EXT_PORT_PSIE(rport->psi[i]),
+ USBSSP_EXT_PORT_PLT(rport->psi[i]),
+ USBSSP_EXT_PORT_PFD(rport->psi[i]),
+ USBSSP_EXT_PORT_LP(rport->psi[i]),
+ USBSSP_EXT_PORT_PSIM(rport->psi[i]));
+ }
+ }
+
+ /* cache usb2 port capabilities */
+ if (major_revision < 0x03 && usbssp_data->num_ext_caps < max_caps)
+ usbssp_data->ext_caps[usbssp_data->num_ext_caps++] = temp;
+
+ if (major_revision != 0x03) {
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "USBSSP: support USB2 software lpm");
+ usbssp_data->sw_lpm_support = 1;
+ if (temp & USBSSP_HLC) {
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "USBSSP: support USB2 hardware lpm");
+ usbssp_data->hw_lpm_support = 1;
+ }
+ }
+
+ usbssp_data->port_array[port_offset-1] = major_revision;
+ if (major_revision == 0x03)
+ usbssp_data->num_usb3_ports++;
+ else
+ usbssp_data->num_usb2_ports++;
+}
+
+/*
+ * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
+ * specify what speeds each port is supposed to be.
+ */
+static int usbssp_setup_port_arrays(struct usbssp_udc *usbssp_data, gfp_t flags)
+{
+ void __iomem *base;
+ u32 offset;
+ u32 port3offset = 0;
+ u32 port2offset = 0;
+ unsigned int num_ports;
+ int i;
+ int cap_count = 0;
+ u32 cap_start;
+
+ num_ports = HCS_MAX_PORTS(usbssp_data->hcs_params1);
+
+ /*USBSSP can support only two ports - one for USB2.0 and
+ * second for USB3.0
+ */
+ if (num_ports > MAX_USBSSP_PORTS) {
+ usbssp_err(usbssp_data,
+ "USBSSP-Dev can't support more then %d ports\n",
+ MAX_USBSSP_PORTS);
+ return -EINVAL;
+ }
+
+ usbssp_data->port_array =
+ kzalloc(sizeof(*usbssp_data->port_array)*num_ports, flags);
+ if (!usbssp_data->port_array)
+ return -ENOMEM;
+
+ base = &usbssp_data->cap_regs->hc_capbase;
+
+ cap_start = usbssp_find_next_ext_cap(base, 0, USBSSP_EXT_CAPS_PROTOCOL);
+ if (!cap_start) {
+ usbssp_err(usbssp_data,
+ "No Ext. Cap. registers, unable to set up ports\n");
+ return -ENODEV;
+ }
+
+ offset = cap_start;
+
+ /* count extended protocol capability entries for later caching */
+ while (offset) {
+ u32 temp;
+ u8 major_revision;
+
+ temp = readl(base + offset);
+ major_revision = USBSSP_EXT_PORT_MAJOR(temp);
+
+ if (major_revision == 0x03 && port3offset == 0)
+ port3offset = offset;
+ else if (major_revision <= 0x02 && port2offset == 0)
+ port2offset = offset;
+
+ cap_count++;
+
+ offset = usbssp_find_next_ext_cap(base, offset,
+ USBSSP_EXT_CAPS_PROTOCOL);
+ }
+
+ if (cap_count > MAX_USBSSP_PORTS) {
+ usbssp_err(usbssp_data, "Too many Ext. Cap. registers\n");
+ return -EINVAL;
+ }
+
+ if (!port3offset && !port2offset) {
+ usbssp_warn(usbssp_data, "No ports on the USBSSP?\n");
+ return -ENODEV;
+ }
+
+ usbssp_data->ext_caps =
+ kzalloc(sizeof(*usbssp_data->ext_caps) * cap_count, flags);
+ if (!usbssp_data->ext_caps)
+ return -ENOMEM;
+
+ /** if exist add USB3 port*/
+ if (port3offset)
+ usbssp_add_in_port(usbssp_data, num_ports,
+ base + port3offset, cap_count);
+
+ /** add USB2 port*/
+ if (port2offset)
+ usbssp_add_in_port(usbssp_data, num_ports,
+ base + port2offset, cap_count);
+
+ if (usbssp_data->num_usb2_ports == 0 &&
+ usbssp_data->num_usb3_ports == 0) {
+ usbssp_warn(usbssp_data, "No ports on the USBSSP?\n");
+ return -ENODEV;
+ }
+
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "Found %u USB 2.0 ports and %u USB 3.0 ports.",
+ usbssp_data->num_usb2_ports,
+ usbssp_data->num_usb3_ports);
+
+ //Only one port USB3.0 and USB2.0 can be supported by USBSSP_DEV
+ if (usbssp_data->num_usb3_ports > 1) {
+ usbssp_err(usbssp_data, "Limiting USB 3.0 ports to 1\n");
+ return -EINVAL;
+ }
+
+ if (usbssp_data->num_usb2_ports > 1) {
+ usbssp_err(usbssp_data, "Limiting USB 2.0 ports to 1\n");
+ return -EINVAL;
+ }
+
+ /*
+ * Note we could have only USB 3.0 ports, or USB 2.0 ports.
+ */
+ if (usbssp_data->num_usb2_ports) {
+ for (i = 0; i < num_ports; i++) {
+
+ if (usbssp_data->port_array[i] == 0x03)
+ continue;
+ usbssp_data->usb2_ports =
+ &usbssp_data->op_regs->port_status_base +
+ NUM_PORT_REGS*i;
+
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "USB 2.0 port at index %u, addr = %p",
+ i, usbssp_data->usb2_ports);
+ }
+ }
+
+ if (usbssp_data->num_usb3_ports) {
+
+ for (i = 0; i < num_ports; i++)
+ if (usbssp_data->port_array[i] == 0x03) {
+ usbssp_data->usb3_ports =
+ &usbssp_data->op_regs->port_status_base +
+ NUM_PORT_REGS*i;
+
+ usbssp_dbg_trace(usbssp_data,
+ trace_usbssp_dbg_init,
+ "USB 3.0 port at index %u, addr = %p",
+ i, usbssp_data->usb3_ports);
+ }
+ }
+
+ return 0;
+}
+
+void usbssp_force_fs_mode(struct usbssp_udc *usbssp_data)
+{
+ #define D_XEC_CFG_DEV_20PORT_REG6 0x2130
+ #define D_XEC_CFG_DEV_20PORT_REG6_FORCE_FS 1
+
+ writel(D_XEC_CFG_DEV_20PORT_REG6_FORCE_FS,
+ usbssp_data->regs + D_XEC_CFG_DEV_20PORT_REG6);
+}
+
+int usbssp_mem_init(struct usbssp_udc *usbssp_data, gfp_t flags)
+{
+ dma_addr_t dma;
+ struct device *dev = usbssp_data->dev;
+ unsigned int val, val2;
+ u64 val_64;
+ u32 page_size;
+ int i, ret;
+
+ INIT_LIST_HEAD(&usbssp_data->cmd_list);
+
+ /* init command timeout work */
+ INIT_DELAYED_WORK(&usbssp_data->cmd_timer,
+ usbssp_handle_command_timeout);
+ init_completion(&usbssp_data->cmd_ring_stop_completion);
+
+ usbssp_data->bottom_irq_wq =
+ create_singlethread_workqueue(dev_name(usbssp_data->dev));
+
+ if (!usbssp_data->bottom_irq_wq)
+ goto fail;
+
+ INIT_WORK(&usbssp_data->bottom_irq, usbssp_bottom_irq);
+
+ page_size = readl(&usbssp_data->op_regs->page_size);
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "Supported page size register = 0x%x", page_size);
+ for (i = 0; i < 16; i++) {
+ if ((0x1 & page_size) != 0)
+ break;
+ page_size = page_size >> 1;
+ }
+ if (i < 16)
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "Supported page size of %iK", (1 << (i+12)) / 1024);
+ else
+ usbssp_warn(usbssp_data, "WARN: no supported page size\n");
+
+ /* Use 4K pages, since that's common and the minimum the
+ * USBSSP supports
+ */
+ usbssp_data->page_shift = 12;
+ usbssp_data->page_size = 1 << usbssp_data->page_shift;
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "USBSSP page size set to %iK",
+ usbssp_data->page_size / 1024);
+
+ /* In device mode this value should be equal 1*/
+ val = DEV_HCS_MAX_SLOTS(readl(&usbssp_data->cap_regs->hcs_params1));
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// USBSSP can handle at most %d device slots.", val);
+
+ /*device should have only 1 slot*/
+ if (val > DEV_MAX_SLOTS)
+ pr_err("Invalid number of supported slots");
+
+ val2 = readl(&usbssp_data->op_regs->config_reg);
+ val |= (val2 & ~DEV_HCS_SLOTS_MASK);
+
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// Setting Max device slots reg = 0x%x.", val);
+ writel(val, &usbssp_data->op_regs->config_reg);
+
+ /*
+ * Doorbell array must be physically contiguous
+ * and 64-byte (cache line) aligned.
+ */
+ usbssp_data->dcbaa = dma_alloc_coherent(dev,
+ sizeof(*usbssp_data->dcbaa), &dma, GFP_KERNEL);
+ if (!usbssp_data->dcbaa)
+ goto fail;
+ memset(usbssp_data->dcbaa, 0, sizeof *(usbssp_data->dcbaa));
+ usbssp_data->dcbaa->dma = dma;
+
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// DCBA array address = 0x%llx (DMA), %p (virt)",
+ (unsigned long long)usbssp_data->dcbaa->dma,
+ usbssp_data->dcbaa);
+ usbssp_write_64(usbssp_data, dma, &usbssp_data->op_regs->dcbaa_ptr);
+
+ /*
+ * Initialize the ring segment pool. The ring must be a contiguous
+ * structure comprised of TRBs. The TRBs must be 16 byte aligned,
+ * however, the command ring segment needs 64-byte aligned segments
+ * and our use of dma addresses in the trb_address_map radix tree needs
+ * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
+ */
+ usbssp_data->segment_pool = dma_pool_create("USBSSP ring segments", dev,
+ TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE,
+ usbssp_data->page_size);
+
+ /* See Table 46 and Note on Figure 55 */
+ usbssp_data->device_pool =
+ dma_pool_create("USBSSP input/output contexts", dev,
+ 2112, 64, usbssp_data->page_size);
+ if (!usbssp_data->segment_pool || !usbssp_data->device_pool)
+ goto fail;
+
+ /* Linear stream context arrays don't have any boundary restrictions,
+ * and only need to be 16-byte aligned.
+ */
+ usbssp_data->small_streams_pool =
+ dma_pool_create("USBSSP 256 byte stream ctx arrays",
+ dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
+ usbssp_data->medium_streams_pool =
+ dma_pool_create("USBSSP 1KB stream ctx arrays",
+ dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
+
+ /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
+ * will be allocated with dma_alloc_coherent()
+ */
+ if (!usbssp_data->small_streams_pool ||
+ !usbssp_data->medium_streams_pool)
+ goto fail;
+
+ /* Set up the command ring to have one segments for now. */
+ usbssp_data->cmd_ring = usbssp_ring_alloc(usbssp_data, 1, 1,
+ TYPE_COMMAND, 0, flags);
+ if (!usbssp_data->cmd_ring)
+ goto fail;
+
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "Allocated command ring at %p", usbssp_data->cmd_ring);
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "First segment DMA is 0x%llx",
+ (unsigned long long)usbssp_data->cmd_ring->first_seg->dma);
+
+ /* Set the address in the Command Ring Control register */
+ val_64 = usbssp_read_64(usbssp_data, &usbssp_data->op_regs->cmd_ring);
+ val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
+ (usbssp_data->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
+ usbssp_data->cmd_ring->cycle_state;
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// Setting command ring address to 0x%x", val_64);
+ usbssp_write_64(usbssp_data, val_64, &usbssp_data->op_regs->cmd_ring);
+ usbssp_dbg_cmd_ptrs(usbssp_data);
+
+ val = readl(&usbssp_data->cap_regs->db_off);
+ val &= DBOFF_MASK;
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// Doorbell array is located at offset 0x%x"
+ " from cap regs base addr", val);
+ usbssp_data->dba = (void __iomem *) usbssp_data->cap_regs + val;
+ usbssp_dbg_regs(usbssp_data);
+ usbssp_print_run_regs(usbssp_data);
+ /* Set ir_set to interrupt register set 0 */
+ usbssp_data->ir_set = &usbssp_data->run_regs->ir_set[0];
+
+ /*
+ * Event ring setup: Allocate a normal ring, but also setup
+ * the event ring segment table (ERST).
+ */
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// Allocating event ring");
+ usbssp_data->event_ring = usbssp_ring_alloc(usbssp_data,
+ ERST_NUM_SEGS, 1, TYPE_EVENT, 0, flags);
+ if (!usbssp_data->event_ring)
+ goto fail;
+
+ /*invoke check procedure for usbssp_trb_in_td function*/
+ if (usbssp_check_trb_in_td_math(usbssp_data) < 0)
+ goto fail;
+
+ ret = usbssp_alloc_erst(usbssp_data, usbssp_data->event_ring,
+ &usbssp_data->erst, flags);
+ if (ret)
+ goto fail;
+
+ /* set ERST count with the number of entries in the segment table */
+ val = readl(&usbssp_data->ir_set->erst_size);
+ val &= ERST_SIZE_MASK;
+ val |= ERST_NUM_SEGS;
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// Write ERST size = %i to ir_set 0 (some bits preserved)",
+ val);
+ writel(val, &usbssp_data->ir_set->erst_size);
+
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// Set ERST entries to point to event ring.");
+
+ /* set the segment table base address */
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "// Set ERST base address for ir_set 0 = 0x%llx",
+ (unsigned long long)usbssp_data->erst.erst_dma_addr);
+ val_64 = usbssp_read_64(usbssp_data, &usbssp_data->ir_set->erst_base);
+ val_64 &= ERST_PTR_MASK;
+ val_64 |= (usbssp_data->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
+ usbssp_write_64(usbssp_data, val_64, &usbssp_data->ir_set->erst_base);
+
+ /* Set the event ring dequeue address */
+ usbssp_set_event_deq(usbssp_data);
+ usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init,
+ "Wrote ERST address to ir_set 0.");
+
+ if (scratchpad_alloc(usbssp_data, flags))
+ goto fail;
+
+ if (usbssp_setup_port_arrays(usbssp_data, flags))
+ goto fail;
+
+ return 0;
+
+fail:
+ usbssp_warn(usbssp_data, "Couldn't initialize memory\n");
+ usbssp_halt(usbssp_data);
+ usbssp_reset(usbssp_data);
+ usbssp_mem_cleanup(usbssp_data);
+ return -ENOMEM;
+}
+
--
2.17.1