Re: Btrfs: broken file system design (was Unbound(?) internal fragmentationin Btrfs)

From: Christian Stroetmann
Date: Fri Jun 18 2010 - 14:12:52 EST


Daniel J Blueman wrote:
On Fri, Jun 18, 2010 at 1:32 PM, Edward Shishkin
<edward.shishkin@xxxxxxxxx> wrote:
Mat wrote:
On Thu, Jun 3, 2010 at 4:58 PM, Edward Shishkin<edward@xxxxxxxxxx> wrote:
Hello everyone.

I was asked to review/evaluate Btrfs for using in enterprise
systems and the below are my first impressions (linux-2.6.33).

The first test I have made was filling an empty 659M (/dev/sdb2)
btrfs partition (mounted to /mnt) with 2K files:

# for i in $(seq 1000000); \
do dd if=/dev/zero of=/mnt/file_$i bs=2048 count=1; done
(terminated after getting "No space left on device" reports).

# ls /mnt | wc -l
59480

So, I got the "dirty" utilization 59480*2048 / (659*1024*1024) = 0.17,
and the first obvious question is "hey, where are other 83% of my
disk space???" I looked at the btrfs storage tree (fs_tree) and was
shocked with the situation on the leaf level. The Appendix B shows
5 adjacent btrfs leafs, which have the same parent.

For example, look at the leaf 29425664: "items 1 free space 3892"
(of 4096!!). Note, that this "free" space (3892) is _dead_: any
attempts to write to the file system will result in "No space left
on device".

Internal fragmentation (see Appendix A) of those 5 leafs is
(1572+3892+1901+3666+1675)/4096*5 = 0.62. This is even worse then
ext4 and xfs: The last ones in this example will show fragmentation
near zero with blocksize<= 2K. Even with 4K blocksize they will
show better utilization 0.50 (against 0.38 in btrfs)!

I have a small question for btrfs developers: Why do you folks put
"inline extents", xattr, etc items of variable size to the B-tree
in spite of the fact that B-tree is a data structure NOT for variable
sized records? This disadvantage of B-trees was widely discussed.
For example, maestro D. Knuth warned about this issue long time
ago (see Appendix C).

It is a well known fact that internal fragmentation of classic Bayer's
B-trees is restricted by the value 0.50 (see Appendix C). However it
takes place only if your tree contains records of the _same_ length
(for example, extent pointers). Once you put to your B-tree records
of variable length (restricted only by leaf size, like btrfs "inline
extents"), your tree LOSES this boundary. Moreover, even worse:
it is clear, that in this case utilization of B-tree scales as zero(!).
That said, for every small E and for every amount of data N we
can construct a consistent B-tree, which contains data N and has
utilization worse then E. I.e. from the standpoint of utilization
such trees can be completely degenerated.

That said, the very important property of B-trees, which guarantees
non-zero utilization, has been lost, and I don't see in Btrfs code any
substitution for this property. In other words, where is a formal
guarantee that all disk space of our users won't be eaten by internal
fragmentation? I consider such guarantee as a *necessary* condition
for putting a file system to production.
Wow...a small part of me says 'well said', on the basis that your
assertions are true, but I do think there needs to be more
constructivity in such critique; it is almost impossible to be a great
engineer and a great academic at once in a time-pressured environment.
I find this is somehow off-topic, but:
For sure, it isn't impossible. History showed and present shows that there are exceptions.
If you can produce some specific and suggestions with code references,
I'm sure we'll get some good discussion with potential to improve from
where we are.

Thanks,
Daniel
Have fun
Christian Stroetmann
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/