[RFC,RFT,PATCH] cfq: autotuning support

From: Corrado Zoccolo
Date: Tue Nov 17 2009 - 09:51:32 EST


Hi, this is my first attempt at autotuning cfq parameters, and should apply on top of for-2.6.33 branch.
Jeff and Vivek, if you can test this on your NCQ SSDs, it will help me to have your feedback (please include
the output of: 'grep -r . /sys/block/sdX/queue/iosched' after you run your tests).

The patch introduces code to sample the request service time distribution, and analyze it,
in order to compute the following cfq parameters:
* slice_idle, is computed as the expected service time of random request
* cfq_slice[1] (i.e. the slice for sync queues)
* cfq_slice[0] (i.e. the slice for async queues)

The sync and async slices are scaled from default values proportionally to the new computed slice_idle.

Autotuning will be enabled by default only on kernels compiled with HZ >= 500.
With smaller HZ, I don't think jiffies is reliable to estimate those parameters.

Signed-off-by: Corrado Zoccolo <czoccolo@xxxxxxxxx>
---
block/cfq-iosched.c | 166 ++++++++++++++++++++++++++++++++++++++++++++++++++-
1 files changed, 163 insertions(+), 3 deletions(-)

diff --git a/block/cfq-iosched.c b/block/cfq-iosched.c
index 6925ab9..d786a0b 100644
--- a/block/cfq-iosched.c
+++ b/block/cfq-iosched.c
@@ -32,6 +32,12 @@ static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;

/*
+ * Number of samples to collect before updating autotune
+ * higher # makes the measurements more stable
+ */
+#define CFQ_AUTOTUNE_SAMPLES (10)
+
+/*
* offset from end of service tree
*/
#define CFQ_IDLE_DELAY (HZ / 5)
@@ -201,6 +207,21 @@ struct cfq_data {
unsigned int hw_tag_samples;

/*
+ * disk performance measurements
+ */
+ unsigned long observation_start;
+ /*
+ * measures are split (READ vs WRITE)
+ */
+ unsigned long processed_rq[2];
+ /*
+ * We store an histogram of samples for the service time
+ * in log scale [0..5]; [6] is a count, that is reset every
+ * time autotuning is done (i.e. every CFQ_AUTOTUNE_SAMPLES)
+ */
+ unsigned int serv_time_samples[2][7];
+
+ /*
* idle window management
*/
struct timer_list idle_slice_timer;
@@ -228,6 +249,7 @@ struct cfq_data {
unsigned int cfq_slice_async_rq;
unsigned int cfq_slice_idle;
unsigned int cfq_latency;
+ unsigned int cfq_autotune;

struct list_head cic_list;

@@ -891,6 +913,12 @@ static void cfq_activate_request(struct request_queue *q, struct request *rq)
{
struct cfq_data *cfqd = q->elevator->elevator_data;

+ if (!rq_in_driver(cfqd)) {
+ cfqd->observation_start = jiffies;
+ cfqd->processed_rq[0] = 0;
+ cfqd->processed_rq[1] = 0;
+ }
+
cfqd->rq_in_driver[rq_is_sync(rq)]++;
cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
rq_in_driver(cfqd));
@@ -2562,14 +2590,120 @@ static void cfq_update_hw_tag(struct cfq_data *cfqd)
cfqd->hw_tag = 0;
}

+
+/*
+ * Update the histogram to compute service time
+ * Returns true if we collected enough samples to re-run autotune
+ */
+static bool cfq_update_stime(unsigned samples[6], unsigned long stime)
+{
+ unsigned idx = (stime > 15) + (stime > 7) + (stime > 3)
+ + (stime > 1) + (stime > 0);
+ samples[idx]++;
+ if (samples[idx] > (1U<<31))
+ for (idx = 0; idx < 6; ++idx) {
+ samples[idx]++;
+ samples[idx] >>= 1;
+ }
+
+ if (samples[6]++ < CFQ_AUTOTUNE_SAMPLES)
+ return false;
+ samples[6] = 0;
+ return true;
+}
+
+/*
+ * Currently, we measure only service time for pure READ or WRITE requests
+ * and we update autotune when we have collected enough READ requests
+ */
+static bool cfq_update_perf_measures(struct cfq_data *cfqd, unsigned long now)
+{
+ unsigned long tot_proc = cfqd->processed_rq[0] + cfqd->processed_rq[1];
+ unsigned long obstime = now - cfqd->observation_start;
+ unsigned long stime = obstime / tot_proc;
+
+ cfqd->observation_start = now;
+
+ if (!cfqd->processed_rq[READ])
+ cfq_update_stime(cfqd->serv_time_samples[WRITE], stime);
+ if (!cfqd->processed_rq[WRITE])
+ return cfq_update_stime(cfqd->serv_time_samples[READ], stime);
+ return false;
+}
+
+/*
+ * Compute service time from the sampled distribution in the histogram
+ * The real service time distribution is a super-position of two distinct
+ * distributions:
+ * the one for sequential requests (usually this has a small mean)
+ * the one for random requests (usually with a larger mean)
+ * and we want to identify the random request one
+ */
+static unsigned cfq_service_time(unsigned samples[6])
+{
+ unsigned last_max = 0, i;
+ /* Random request service time corresponds to the
+ * largest maximum in the histogram */
+ for (i = 1; i < 6; ++i)
+ if (samples[i] > samples[i-1])
+ last_max = i;
+ /*
+ * Unfortunately, if sequential requests overwhelm
+ * random ones, and the two peaks are too near,
+ * the second peak could be masked by the tail of the first.
+ * To catch this, we check if the tail has enough weight,
+ * and in this case we take the next bin as maximum
+ */
+ if (last_max < 5) {
+ unsigned total = 0;
+ for (i = last_max + 1; i < 6; ++i)
+ total += samples[i];
+ if (total > samples[last_max])
+ ++last_max;
+ }
+ if (!last_max)
+ return 0;
+ return 1U << last_max;
+}
+
+static void cfq_update_autotune(struct cfq_data *cfqd)
+{
+ unsigned long base, baseW;
+ if (!cfqd->cfq_autotune)
+ return;
+ base = cfq_service_time(cfqd->serv_time_samples[READ]);
+ baseW = cfq_service_time(cfqd->serv_time_samples[WRITE]);
+
+ /* Compute slice_idle */
+ if (!base)
+ base = baseW;
+ if (base > cfq_slice_idle)
+ base = min_t(unsigned long,
+ (base + cfq_slice_idle) / 2, 2 * cfq_slice_idle);
+
+ cfqd->cfq_slice_idle = base;
+
+ /* Compute derived cfq_slice[*]
+ * Note: those cannot be 0
+ */
+ if (!base)
+ base = 1;
+
+ if (baseW)
+ baseW = min(base, baseW * cfq_slice_sync / cfq_slice_async);
+ else
+ baseW = base;
+
+ cfqd->cfq_slice[1] = base * cfq_slice_sync / cfq_slice_idle;
+ cfqd->cfq_slice[0] = baseW * cfq_slice_async / cfq_slice_idle;
+}
+
static void cfq_completed_request(struct request_queue *q, struct request *rq)
{
struct cfq_queue *cfqq = RQ_CFQQ(rq);
struct cfq_data *cfqd = cfqq->cfqd;
const int sync = rq_is_sync(rq);
- unsigned long now;
-
- now = jiffies;
+ unsigned long now = jiffies;
cfq_log_cfqq(cfqd, cfqq, "complete");

cfq_update_hw_tag(cfqd);
@@ -2578,6 +2712,10 @@ static void cfq_completed_request(struct request_queue *q, struct request *rq)
WARN_ON(!cfqq->dispatched);
cfqd->rq_in_driver[sync]--;
cfqq->dispatched--;
+ cfqd->processed_rq[rq_data_dir(rq)]++;
+
+ if (!rq_in_driver(cfqd) && cfq_update_perf_measures(cfqd, now))
+ cfq_update_autotune(cfqd);

if (cfq_cfqq_sync(cfqq))
cfqd->sync_flight--;
@@ -2966,6 +3104,7 @@ static void *cfq_init_queue(struct request_queue *q)
cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
cfqd->cfq_slice_idle = cfq_slice_idle;
cfqd->cfq_latency = 1;
+ cfqd->cfq_autotune = (HZ >= 500);
cfqd->hw_tag = -1;
cfqd->last_end_sync_rq = jiffies;
return cfqd;
@@ -3002,6 +3141,23 @@ fail:
/*
* sysfs parts below -->
*/
+static ssize_t autotune_stats_show(struct elevator_queue *e, char *page)
+{
+ struct cfq_data *cfqd = e->elevator_data;
+ int pos = 0, i, j;
+#if HZ < 500
+ pos += sprintf(page, "Autotune may work incorrectly with HZ < 500\n");
+#endif
+ for (j = 0; j < 2; ++j) {
+ for (i = 0; i < 6; ++i)
+ pos += sprintf(page+pos, "[%2u]",
+ cfqd->serv_time_samples[j][i]);
+ page[pos++] = '\n';
+ }
+ page[pos] = '\0';
+ return pos;
+}
+
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
@@ -3036,6 +3192,7 @@ SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
+SHOW_FUNCTION(cfq_autotune_show, cfqd->cfq_autotune, 0);
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
@@ -3068,6 +3225,7 @@ STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
UINT_MAX, 0);
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
+STORE_FUNCTION(cfq_autotune_store, &cfqd->cfq_autotune, 0, 1, 0);
#undef STORE_FUNCTION

#define CFQ_ATTR(name) \
@@ -3084,6 +3242,8 @@ static struct elv_fs_entry cfq_attrs[] = {
CFQ_ATTR(slice_async_rq),
CFQ_ATTR(slice_idle),
CFQ_ATTR(low_latency),
+ CFQ_ATTR(autotune),
+ __ATTR_RO(autotune_stats),
__ATTR_NULL
};

--
1.6.2.5


--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/